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About ODAHU
The Open Data AI Hub (ODAHU) is an open source project that provides the building
blocks for enterprise grade MLOps platforms.
Multi ML Frameworks

• Supporting major ML frameworks: Scikit-learn, Keras, Tensorflow, PyTorch,
H2O (and more)

• Extends MLflow services with enterprise level features
Multi Clouds

• Kubernetes native system of services
• Deployment automation to Kubernetes cluster with Helm charts
• Supporting major Kubernetes platforms: AWS EKS, Azure AKS, GCP GKE,

RedHat OpenShift
Secure

• Single sign-on (SSO) based on OAuth2
• RESTful API secured with SSL
• Role based access control based on Open Policy Agent
• Users activity audit
• Credentials and keys manager based on HashiCorp Vault
• Internal traffic encryption with Istio

Modular and Extensible

• Services for different ML phases: transform, train, validate, package, deploy,
evaluate

• Services are extensible and manageable via REST APIs, SDK and CLI
• Functionality extensible with new services
• Connectors for data sources, package repositories, Docker container registries
• Plugins for data science IDEs
• Plugins for workflow engines like Airflow

Scalable

• Systems based on ODAHU components can be scaled from small to very
large.

• Scalable ML model training, packaging, serving components
Manageable

• Pre-build monitoring dashboards
• Configurable alerting rules
• Configurable logs collection
• Compatible with third party logs processing systems

About ODAHU
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Open

• It is free and open-source with the Apache2 License.
• Contribution to project is welcome!

About ODAHU
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Concepts

Phases

Odahu splits the ML/AI model lifecycle into three phases:

1. Train
2. Package
3. Deploy

Applications and tools can further automate each phase by implementing pluggable
extensions as

1. Trainer
2. Packager or
3. Deployer

Trainers and Packagers can be registered as components of the Odahu Platform
using:

1. Trainer Extension
2. Packager Extension

When registered, these components can use Odahu Trainer Metrics and Trainer
Tags.
Users are encouraged to integrate third-party Trainer Extensions and Packager
Extensions.

Toolchains
Taken together a Trainer, Packager, and Deployer comprise a Toolchain that
automates an end-to-end machine learning pipeline.

Ready to use
Odahu provides a Trainer Extension and a Packager Extension

1. MLflow Trainer
2. REST API Packager

These power the default Toolchain.

Concepts
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Model storage
Odahu Platform stores models in Trained Model Binaries for different languages.
Presently, Odahu Platform supports only:

1. General Python Prediction Interface
Users are encouraged to provide additional formats.

Model storage
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Architecture
The components diagram below shows high level architecture of ODAHU project.

Core components:

• Training component for executing ML model training jobs in K8S.
• Packaging component for wrapping up ML model binary to an online service,

batch job, library or command line tool.
• Deployment component for deploying ML model as a service or batch job.
• Feedback Loop component for collecting prediction feedback and linking it

with actual prediction request and response.
• Connections component for managing credentials for external systems (data

storages, code repositories, package repositories, docker registries, etc.) in a
secure way. It uses HashiCorp Vault under the hood.

• Deployment automation scripts for deploying ODAHU components to major
cloud providers AWS, Azure, GCP.

Interfaces:

• RESTful API
• SDK for ODAHU components API generated from OpenAPI/Swagger

specification.
• Web control panel based on ODAHU SDK for interacting with ODAHU

components via Web UI.
• Command line interface based on ODAHU SDK for interacting with ODAHU

components via terminal commands.
Extensions for external tools:

Architecture
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• Argo Workflow templates based on ODAHU SDK and CLI provide Argo
Workflow steps for ODAHU Training, Packaging and Deployment APIs Argo
Workflow

• ODAHU Airflow plugin based on SDK provides Airflow operators for ODAHU
Training, Packaging and Deployment APIs Apache Airflow

• JupyterLab extension adds UI features to JupyterLab for interacting with
ODAHU components.

Architecture
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Distributions

HELM charts
• Release and pre-release Helm charts are in github.

Helm chart name Repository Description
odahu-flow-fluen
td

odahu/odahu-infra Fluentd with gcp, s3 and abs
plugins

odahu-flow-k8s-
gke-saa

odahu/odahu-infra GKE role assigner

odahu-flow-knati
ve

odahu/odahu-infra Custom knative chart

odahu-flow-moni
toring

odahu/odahu-infra Prometheus, grafana and
alertmanager

odahu-flow-opa odahu/odahu-infra Open Policy Agent
odahu-flow-tekto
n

odahu/odahu-infra Custom tekton chart

odahu-flow-core odahu/odahu-flow Core Odahu-flow services
odahu-flow-mlflo
w

odahu/odahu-trainer Odahu-flow mlflow toolchain

odahu-flow-pack
agers

odahu/odahu-packager Odahu-flow REST packager

Docker Images
Release versions of images are on Docker Hub in the odahu team.
Image name Repository Description

odahu-flow-fluen
td

odahu/odahu-infra Fluentd with gcp, s3 and abs
plugins

odahu-flow-api odahu/odahu-flow Odahu-flow API service
odahu-flow-mod
el-cli

odahu/odahu-flow Odahu-flow CLI

odahu-flow-mod
el-trainer

odahu/odahu-flow Trainer helper

odahu-flow-mod
el-packager

odahu/odahu-flow Packager helper

odahu-flow-servi
ce-catalog

odahu/odahu-flow Swagger for model deployments

Distributions
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odahu-flow-oper
ator

odahu/odahu-flow Odahu-flow kubernetes
orchestrator

odahu-flow-feed
back-collector

odahu/odahu-flow REST API for user feedback service

odahu-flow-feed
back-rq-catcher

odahu/odahu-flow Model deployment
request-response catcher

odahu-flow-mlflo
w-toolchain

odahu/odahu-trainer Odahu-flow mlflow toolchain

odahu-flow-mlflo
w-toolchain-gpu

odahu/odahu-trainer Odahu-flow mlflow toolchain with
NVIDIA GPU

odahu-flow-mlflo
w-tracking-serve
r

odahu/odahu-trainer MLflow tracking service

odahu-flow-pack
agers

odahu/odahu-packager Odahu-flow packagers

base-notebook odahu/odahu-flow-jupyterl
ab-plugin

Image with JupyterLab extension
based on jupyter/base-notebook

datascience-not
ebook

odahu/odahu-flow-jupyterl
ab-plugin

Image with JupyterLab extension
based on
jupyter/datascience-notebook

tensorflow-noteb
ook

odahu/odahu-flow-jupyterl
ab-plugin

Image with JupyterLab extension
based on
jupyter/tensorflow-notebook

Python packages
• Release versions of Python packages are on PyPi: odahu.
Package name Repository Description

odahu-flow-cli odahu/odahu-flow Odahu-flow CLI
odahu-flow-sdk odahu/odahu-flow Odahu-flow SDK
odahu-flow-jupyt
erlab-plugin

odahu/odahu-flow-jupyterl
ab-plugin

Jupyterlab with the Odahu-flow
plugin

odahu-flow-airflo
w-plugin

odahu/odahu-airflow-plugi
n

Odahu-flow Airflow
plugin(operators, hooks and so on)

NPM packages
• Release versions of Python packages are on npm in project odahu.
Package name Repository Description

Python packages
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odahu-flow-jupyt
erlab-plugin

odahu/odahu-flow-jupyterl
ab-plugin

Jupyterlab with the Odahu-flow
plugin

Python packages
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Security
Prime goals of ODAHU Security system is to provide authentication, authorization
and give users a flexible access control management solution.
The first section Security overview shows the general design of authentication and
authorization is described. Look at this section to have a deep understanding of how
ODAHU security works under the hood or to learn basic concepts.
The second section Policies describes default security policies for different ODAHU
services and how to configure them
Implementation details of ODAHU Security system could be found here
Security overview 10

Component roles 10
API Request lifecycle 11

Policies 12
ODAHU API and Feedback aggregator policies 12

Overview 12
Customize 12

Extend roles 13
Customize default mapper 13
Create custom policies 14

ODAHU ML Models pods policies 15

Security overview

Component roles
There are some common terms related to access control management systems. In
this documentation, the next ones are commonly used.
Identity Provider (idP)

A component that provides information about an entity (user or service). In
ODAHU the role of idP can do any OpenID Connect compatible provider.

Policy Enforcement Point (PEP)
A component that enforces security policies against each request to API or other
protected resources. In ODAHU the role of PEP plays Envoy proxy.

Policy Decision Point (PDP)
A component that decides whether the request (action in the system) should be
permitted or not. In ODAHU role of PDP plays OpenPolicyAgent.

Security
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API Request lifecycle
To have a better understanding of how all ODAHU security components work
together let’s review the API request lifecycle and describe what is happened for
each HTTP request.

1. HTTP Request could be made from the outside of the cluster perimeter.

1. In this case, the request is handled by OAuth2Proxy via Kubernetes ingress
controller

2. OAuth2Proxy looks up cookies that contain JWT Token issued by idP. If there
are no such cookies it redirects the request to idP. After successful login
OAuth2Proxy set issued token to cookies (and also to) and send the request
to upstream. Before proxying requests to upstream OAuth2Proxy add
Authorization Request Header Field from the cookie automatically by setting
it from the cookie.

3. OAuth2Proxy send request to upstream.
2. HTTP Request from inside the cluster perimeter. Such requests usually made by

background processes inside the cluster on behalf of service accounts.

1. Service should previously authenticate in idP using OpenID Connect protocol.
The most suitable way to authenticate services is OAuth2 Client Credentials
Grant

2. Service makes a request to API using issued JWT token as Authorization
Request Header Field

3. Envoy proxy as PEP that is configured as sidecar container by Istio Pilot for those
ODAHU components that must be protected ensures that security policy allows
making this request to ODAHU API

1. Envoy verifies JWT token in Authorization Request Header Field using JSON
Web Token (JWT) Authentication filter

2. Envoy makes a query to OpenPolicyAgent sidecar as PDP using External
Authorization filter passing parsed JWT token from the previous step.
OpenPolicyAgent sidecars are injected for all pods that have
odahu-flow-authorization=enabled label

4. If a request is permitted by OpenPolicyAgent, it is sent to upstream (ODAHU API)
UML sequence diagram of a successful API request described above is shown in the
image:

Security
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Policies
ODAHU is distributed with build-in policies that are written on Rego policy language
and included into helm charts of appropriate services.
`Role-based access control`_ is implemented by default for next services

• API
• Feedback aggregator
• ODAHU deployed ML Models

ODAHU API and Feedback aggregator policies

Overview
API and Feedback aggregator are distributed with a pre-defined set of
OpenPolicyAgent policies. These policies implement simple `Role-based access
control`_ (RBAC).
Next features are implemented using Rego policy language:

1. Set of predefined roles with assigned permissions
2. Default mapper that match JWT Claims to attributes that ODAHU RBAC policy

expects
3. ODAHU RBAC core policy

These features are implemented in the next files:

• roles.rego – all odahu roles are listed here
• permissions.rego – permissions for roles
• input_mapper.rego – mapper to match JWT Claims to attributes ODAHU RBAC

rely on. These attributes include:

• user – info about user or service who makes the request (this property
contains roles attribute with a list of roles)

• action – HTTP verb of the request
• resource – URL of the request

• core.rego – core implementation of Role based access control.
All policies customization can be done on the stage of system configuration as
described in installation guide

Customize
In this section, different ways to customize pre-defined policies

Policies
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Extend roles
To define new custom roles, you should add them as a variable in the roles.rego file

roles.rego

1  package odahu.roles
2 
3  admin := "admin"
4  data_scientist := "data_scientist"
5  viewer := "viewer"
6 
7  # new role
8  connection_manager := "connection_manager"

Then you need to set permissions to that role in file permissions.rego
permissions.rego

 1  package odahu.permissions
 2 
 3  import data.odahu.roles
 4 
 5  permissions := {
 6    roles.data_scientist: [
 7        [".*", "api/v1/model/deployment.*"],
 8        [".*", "api/v1/model/packaging.*"],
 9        [".*", "api/v1/model/training.*"],
10        ["GET", "api/v1/connection.*"],
11        ["GET", "api/v1/packaging/integration.*"],
12        ["GET", "api/v1/toolchain/integration.*"]
13      ],
14    roles.admin : [
15        [".*", ".*"]
16    ],
17    roles.viewer : [
18        ["GET", ".*"]
19    ],
20    roles.connection_manager : [
21        [".*", "api/v1/connection.*"]
22    ],
23  }

In this file, we:

• lines 20-22: add permissions to any request to api/v1/connection.* URL for a new
role

Customize default mapper
You can configure mapper.rego to extend input that is passed to core.rego file with
RBAC implementation

mapper.rego

 1 package odahu.mapper
 2 
 3 import data.odahu.roles
 4 
 5 roles_map = {
 6   "odahu_admin": roles.admin,
 7   "odahu_data_scientist": roles.data_scientist,

Policies
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 8   "odahu_viewer": roles.viewer
 9 }
10 
11 jwt = input.attributes.metadata_context.filter_metadata["envoy.filters.http.jwt_authn"].fields.jwt_payload
12 
13 keycloak_user_roles[role]{
14   role = jwt.Kind.StructValue.fields.realm_access.Kind.StructValue.fields.roles.Kind.ListValue.values[_].Kind.StringValue
15 }
16 
17 user_roles[role]{
18   role = roles_map[keycloak_user_roles[_]]
19 }
20 
21 parsed_input = {
22   "action": input.attributes.request.http.method,
23   "resource": input.attributes.request.http.path,
24   "user": {
25     "roles": user_roles
26   }
27 }

In this file, we:

• lines 5-9: map roles from jwt claims to policies roles from roles.rego
• lines 11-19: extract roles from claims and match them to policies roles
• lines 21-26: create input that is expected by file core.rego that contains resource,

action and user’s roles

Create custom policies
If `Role-based access control`_ is not enough for your purposes you can customize
policies to use more general `Attribute-based access control`_. For this purpose,
rewrite core.rego file or create your own rego policies from scratch

core.rego

 1 package odahu.core
 2 
 3 import data.odahu.mapper.parsed_input
 4 import data.odahu.permissions.permissions
 5 
 6 default allow = false
 7 
 8 allow {
 9   any_user_role := parsed_input.user.roles[_]
10     any_permission_of_user_role := permissions[any_user_role][_]
11     action := any_permission_of_user_role[0]
12     resource := any_permission_of_user_role[1]
13 
14     re_match(action, parsed_input.action)
15     re_match(resource, parsed_input.resource)
16 }
17 
18 allow {
19     parsed_input.action == "GET"
20     parsed_input.resource == "/"
21 }
22 
23 allow {
24     parsed_input.action == "GET"
25     re_match("/swagger*", parsed_input.resource)
26 }

In this file, we:

Policies
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• lines 8-16: allow access if there are required permissions for action and resource
for at least one user’s roles

• lines 18-21: allow access to root for any user
• lines 23-26: allow access to swagger docs to any user

ODAHU ML Models pods policies
All deployed models contain default policies that permit requests to them for all
users that have Model Deployment Access Role Name. This role can be set at the
model deployment stage using .Spec.roleName key of the ModelDeployment
manifest and also statically configured in policies during ODAHU deployment.

Policies
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Installation
To install ODAHU services, you need to provide a number of preliminary
requirements for it.
In particular:

• Python 3.6 or higher; to install JupyterLab extension or Odahuflowctl which are
interfaces for interacting with Odahu-flow cluster.

• Kubernetes cluster to perform base and accessory ODAHU services in it, as well
as models training, packaging and deployment processes. To be able to use
ODAHU services, minimum version of your Kubernetes cluster must be at least
1.16.

• object storage to store models training artifacts and get input data for models
(S3, Google Cloud Storage, Azure Blob storage are supported)

• Docker registry (to store resulting Docker images from packagers)

Kubernetes setup

Deploy Kubernetes cluster in Google Compute Platform (GKE)
Prerequisites:

• GCP service account to deploy Kubernetes cluster with and use its credentials for
access to object storage and Google Cloud Registry

• Google Cloud Storage bucket (odahu-flow-test-store in examples below) to
store models output data

Run deploy of a new Kubernetes cluster:

$ gcloud container clusters create <cluster-name> \
    --cluster-version 1.13 \
    --machine-type=n1-standard-2 \
    --disk-size=100GB \
    --disk-type=pd-ssd \
    --num-nodes 4 \
    --zone <cluster-region> \
    --project <project-id>

Note

Make sure that the disk size on the cluster nodes is sufficient to store images for
all services and packaged models. We recommend using a disk size of at least 100
GiB.

You can enable the GPU on your Kubernetes cluster, follow the instructions on how to
use GPU hardware accelerators in your GKE clusters’ nodes.

Installation
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Fetch your Kubernetes credentials for kubectl after cluster is successfully deployed:

$ gcloud container clusters get-credentials <cluster-name> \
    --zone <cluster-region> \
    --project <project-id>

Deploy Kubernetes cluster in Amazon Web Services (EKS)
Prerequisites

• Resources that are described in AWS documentation
• AWS S3 bucket (odahu-flow-test-store in examples below) to store models

output data
After you’ve created VPC and a dedicated security group for it along with Amazon
EKS service role to apply to your cluster, you can create a Kubernetes cluster with
following command:

$ aws eks --region <cluster-region> create-cluster \
    --name <cluster-name> --kubernetes-version 1.13 \
    --role-arn arn:aws:iam::111122223333:role/eks-service-role-AWSServiceRoleForAmazonEKS-EXAMPLEBKZRQR \
    --resources-vpc-config subnetIds=subnet-a9189fe2,subnet-50432629,securityGroupIds=sg-f5c54184

Use the AWS CLI update-kubeconfig command to create or update kubeconfig for
your cluster:

$ aws eks --region <cluster-region> update-kubeconfig --name <cluster-name>

Deploy Kubernetes cluster in Microsoft Azure (AKS)
Prerequisites

• Azure AD Service Principal to interact with Azure APIs and create dynamic
resources for an AKS cluster

• Azure Storage account with Blob container (odahu-flow-test-store in
examples below) to store models output data

First, create a resource group in which all created resources will be placed:

$ az group create --location <cluster-region> \
    --name <resource-group-name>

Run deploy of a new Kubernetes cluster:

$ az aks create --name <cluster-name> \
    --resource-group <resource-group-name>
    --node-vm-size Standard_DS2_v2 \
    --node-osdisk-size 100GB \
    --node-count 4 \

Installation
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    --service-principal <service-principal-appid> \
    --client-secret <service-principal-password>

Fetch your Kubernetes credentials for kubectl after cluster is successfully deployed:

$ az aks get-credentials --name <cluster-name> \
    --resource-group <resource-group-name>

Install base Kubernetes services

Install Helm (version 3.1.2)

Install Nginx Ingress
Install nginx-ingress Helm chart:

$ helm install stable/nginx-ingress --name nginx-ingress --namespace kube-system

Get external LoadBalancer IP assigned to nginx-ingress service:

$ kubectl get -n kube-system svc nginx-ingress-controller \
    -o=jsonpath='{.status.loadBalancer.ingress[*].ip}{"\n"}'

Install Istio (with Helm and Tiller)

Note

ODAHU services uses number of Istio custom resources actively, so Istio
installation is mandatory.

Add Helm repository for Istio charts

$ helm repo add istio https://storage.googleapis.com/istio-release/releases/1.4.2/charts/

Crate a namespace for the istio-system components

$ kubectl create namespace istio-system

Install the istio-init chart to bootstrap all the Istio’s CustomResourceDefinitions
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$ helm install istio/istio-init --name istio-init --namespace istio-system

Ensure that all istio-init jobs have been completed:

$ kubectl -n istio-system get job \
    -o=jsonpath='{range.items[?(@.status.succeeded==1)]}{.metadata.name}{"\n"}{end}'

Install Istio Helm chart with provided values.
Example:

$ cat << EOF > istio_values.yaml
global:
  proxy:
    accessLogFile: "/dev/stdout"
  disablePolicyChecks: false
sidecarInjectorWebhook:
  enabled: true
pilot:
  enabled: true
mixer:
  policy:
    enabled: true
  telemetry:
    enabled: true
  adapters:
    stdio:
      enabled: true
gateways:
  istio-ingressgateway:
    enabled: true
    type: ClusterIP
    meshExpansionPorts: []
    ports:
      - port: 80
        targetPort: 80
        name: http
      - port: 443
        name: https
      - port: 15000
        name: administration
  istio-egressgateway:
    enabled: true
prometheus:
  enabled: false
EOF

$ helm install istio/istio --name istio --namespace istio-system --values ./istio_values.yaml

Add ODAHU Helm charts repository

$ helm repo add odahu https://raw.githubusercontent.com/odahu/odahu-helm/master

Install Knative
Create namespace for Knative and label it for Istio injection:
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$ kubectl create namespace knative-serving && \
    kubectl label namespace knative-serving istio-injection=enabled

Install Knative with Helm chart provided by ODAHU team:

$ helm install odahu/odahu-flow-knative --name knative --namespace knative-serving

Install Tekton Pipelines
Create namespace for Tekton:

$ kubectl create namespace tekton-pipelines

Install Tekton Pipelines with Helm chart provided by ODAHU team:

$ helm install odahu/odahu-flow-tekton --name tekton --namespace tekton-pipelines

Install Fluentd with set of cloud object storage plugins
In order to save models training logs to object storage of cloud provider you use, a
container with fluentd is used, in which a set of plugins for popular cloud providers’
object storages (AWS S3, Google Storage, Azure Blob) is added. Installation is done
using a fluentd Helm chart provided by ODAHU team.
First, create an object storage bucket:

$ gsutil mb gs://odahu-flow-test-store/

Create namespace for Fluentd:

$ kubectl create namespace fluentd

Install Fluentd with specified values. Full list of values you can see in chart’s
values.yaml.
Example:

$ cat << EOF > fluentd_values.yaml
output:
  target: gcs
  gcs:
    authorization: keyfile
    bucket: odahu-flow-test-store
    project: my-gcp-project-id-zzzzz
    private_key_id: 0bacc0b0caa0a0aacabcacbab0a0b00ababacaab
    private_key: -----BEGIN PRIVATE KEY-----\nprivate-key-here\n-----END PRIVATE KEY-----\n
    client_email: service-account@my-gcp-project-id-zzzzz.iam.gserviceaccount.com
    client_id: 000000000000000000000
    auth_uri: https://accounts.google.com/o/oauth2/auth
    token_uri: https://oauth2.googleapis.com/token
    auth_provider_x509_cert_url: https://www.googleapis.com/oauth2/v1/certs
    client_x509_cert_url: https://www.googleapis.com/robot/v1/metadata/x509/service-account%40my-gcp-project-id-zzzzz.iam.gserviceaccount.com
EOF
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$ helm install odahu/odahu-flow-fluentd --name fluentd --namespace fluentd --values ./fluentd_values.yaml

Install PostgreSQL (optional)
Create namespace for PostgreSQL:

$ kubectl create namespace postgresql

Install PostgreSQL Operator with Helm chart:

$ helm install postgres-operator/postgres-operator --name odahu-db --namespace postgresql

You must configure your PostgreSQL operator using next values
Parameters to configure PostgreSQL Provider:

$  cat << EOF > postgres.yaml
apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:
  name: odahu
  namespace: postgres
spec:
  teamId: "postgres"
  volume:
    size: 10Gi
  numberOfInstances: 2
  users:
    mlflow: []
    jupyterhub: []
    odahu: []
  databases:
    mlflow: mlflow,
    jupyterhub: jupyterhub,
    odahu: odahu
  postgresql:
    version: "12"
  ---
  apiVersion: v1
  kind: Secret
  metadata:
    name: jupyterhub.odahu-db.credentials.postgresql.acid.zalan.do
    namespace: postgres
  type: Opaque
  ---
  apiVersion: v1
  kind: Secret
  metadata:
    name: mlflow.odahu-db.credentials.postgresql.acid.zalan.do
    namespace: postgres
  type: Opaque
  ---
  apiVersion: v1
  kind: Secret
  metadata:
    name: odahu.odahu-db.credentials.postgresql.acid.zalan.do
    namespace: postgres
  type: Opaque

Apply configuration to kubernetes: .. code:: bash
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kubectl apply -f postgres.yaml

Install Open Policy Agent (optional)
To activate API authentication and authorization using Security install
OpenPolicyAgent (OPA) helm chart with ODAHU built-in policies.
Create namespace for OPA

$ kubectl create namespace odahu-flow-opa

Install OpenPolicyAgent with Helm chart provided by ODAHU team:

$ helm install odahu/odahu-flow-opa --name odahu-flow-opa --namespace odahu-flow-opa

You must configure your OpenID provider (to allow envoy JWT token verifying) using
next Helm values

Parameters to configure OpenID provider

# authn overrides configuration of envoy.filters.http.jwt_authn http filter
authn:
  # enabled activate envoy authn filter that verify jwt token and pass parsed data
  # to next filters (particularly to authz)
  oidcIssuer: ""
  oidcJwks: ""
  oidcHost: ""
  localJwks: ""

For information about authn section parameters see docs for envoy authentication
filter
By default chart is delivered with built-in policies that implements Role based
access system and set of pre-defined roles. To customize some of built-in policies
files or define new ones use next Helm values

Parameters to configure built-in policies

opa:
  policies: {}
  #  policies:
    #  file1: ".rego policy content encoded as base64"
    #  file2: ".rego policy content encoded as base64"

Warning

Content of rego files defined in values.yaml should be base64 encoded
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Install ODAHU

Install core ODAHU services
Create namespace for core ODAHU service:

$ kubectl create namespace odahu-flow &&\
    kubectl label namespace odahu-flow project=odahu-flow

Create namespaces for ODAHU training, packaging and deployment.

$ for i in training packaging deployment; do \
    kubectl create namespace odahu-flow-${i} &&\
    kubectl label namespace odahu-flow-${i} project=odahu-flow; done

To provision pods in the deployment namespace according to node selectors and
toleration from the config you need to label the namespace so the model deployment
webhook use it as a target

$ kubectl label namespace odahu-flow-deployment odahu/node-selector-webhook=enabled

Deployment namespace should be also labeled for Istio injection.

$ kubectl label namespace odahu-flow-deployment istio-injection=enabled

Prepare YAML config with values for odahu-flow-core Helm chart.
Example:

$  cat << EOF > odahuflow_values.yaml
logLevel: debug
ingress:
  enabled: true
  globalDomain: odahu.example.com
edge:
  ingress:
    enabled: true
    domain: odahu.example.com
feedback:
  enabled: true
config:
  common:
    external_urls:
    - name: Documentation
      url: https://docs.odahu.epam.com
    databaseConnectionString: postgresql://odahu:PASSWORD@odahu-db.postgresql/odahu
  connection:
    enabled: true
    decrypt_token: somenotemptystring
    repository_type: kubernetes
  deployment:
    edge:
      host: http://odahu.example.com
EOF

Install ODAHU

23

https://github.com/odahu/odahu-flow/tree/develop/helms/odahu-flow-core


Note

This example uses hostname odahu.example.com as entrypoint for cluster
services. It should point to LoadBalancer IP got from Nginx Ingress section.

In order to setup ODAHU services along with ready-to-use connections, you may
add according section to values YAML in advance.
To support training on GPU, you should provide the GPU node selectors and
tolerations:
Example:

Example of Connection GCS:

config:
  training:
    gpu_toleration:
      Key: dedicated
      Operator: Equal
      Value: training-gpu
      Effect: NO_SCHEDULE
    gpu_node_selector:
      mode: odahu-flow-training-gpu

Examples:

a. Docker registry connection is used to pull/push Odahu packager resulting Docker
images to a Docker registry

connections:
- id: docker-hub
  spec:
    description: Docker registry for model packaging
    username: "user"
    password: "supersecure"
    type: docker
    uri: docker.io/odahu-models-repo
    webUILink: https://hub.docker.com/r/odahu-models-repo
    vital: true

b. Google Cloud Storage connection is used to store model trained artifacts and
input data for ML modelsconnections:

- id: models-output
  spec:
    description: Object storage for trained artifacts
    keySecret: '{ "type": "service_account", "project_id": "my-gcp-project-id-zzzzz", "private_key_id": "0bacc0b0caa0a0aacabcacbab0a0b00ababacaab", "private_key": "-----BEGIN PRIVATE KEY-----\nprivate-key-here\n-----END PRIVATE KEY-----\n", "client_email": "service-account@my-gcp-project-id-zzzzz.iam.gserviceaccount.com", "client_id": "000000000000000000000", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/service-account%40my-gcp-project-id-zzzzz.iam.gserviceaccount.com" }'
    region: my-gcp-project-id-zzzzz
    type: gcs
    uri: gs://odahu-flow-test-store/output
    webUILink: https://console.cloud.google.com/storage/browser/odahu-flow-test-store/output?project=my-gcp-project-id-zzzzz
    vital: true

If you install Open Policy Agent for ODAHU then you will need to configure service
accounts which will be used by ODAHU core background services such as <Trainer>
or <Packager>.
All service accounts below require odahu-admin ODAHU built-in role. (see more about
built-in roles in security docs)
Next values with service account credentials are required :

values.yaml

 1 config:
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 2   operator:
 3     # OpenId Provider token url
 4     oauth_oidc_token_endpoint: https://oauth2.googleapis.com/token
 5     # Credentials from OAuth2 client with Client Credentials Grant
 6     client_id: client-id
 7     client_secret: client-secret
 8 
 9   trainer:
10     # OpenId Provider token url
11     oauth_oidc_token_endpoint: https://oauth2.googleapis.com/token
12     # Credentials from OAuth2 client with Client Credentials Grant
13     client_id: client-id
14     client_secret: client-secret
15 
16   packager:
17     # OpenId Provider token url
18     oauth_oidc_token_endpoint: https://oauth2.googleapis.com/token
19     # Credentials from OAuth2 client with Client Credentials Grant
20     client_id: client-id
21     client_secret: client-secret
22 
23 # Service account used to upload odahu resources via odahuflowctl
24 resource_uploader_sa:
25   client_id: some-client-id
26   client_secret: client-secret
27 
28 # OpenID provider url
29 oauth_oidc_issuer_url: ""

In this file, we:

• lines 2-7: configure service account for Operator
• lines 9-14: configure service account for Trainer
• lines 16-21: configure service account for Packager
• lines 24-29: configure service account Kubernetes Job that install some ODAHU

Manifests using ODAHU API
Install odahu-flow core services:

$ helm install odahu/odahu-flow-core --name odahu-flow --namespace odahu-flow --values ./odahuflow_values.yaml

Training service (MLFlow)
Prepare YAML config with values for odahu-flow-mlflow Helm chart.

$ cat << EOF > mlflow_values.yaml
logLevel: debug
ingress:
  globalDomain: example.com
  enabled: true
tracking_server:
  annotations:
    sidecar.istio.io/inject: "false"
toolchain_integration:
  enabled: true
EOF
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If you install Open Policy Agent for ODAHU then you will need to configure service
account for a Kubernetes Job that install some ODAHU Manifests using ODAHU API.
This Service account should have role odahu-admin.
Next values with service account credentials are required :

values.yaml

1 # Service account used to upload odahu resources via odahuflowctl
2 resource_uploader_sa:
3   client_id: some-client-id
4   client_secret: client-secret
5 
6 # OpenID provider url
7 oauth_oidc_issuer_url: ""

Install Helm chart:

$ helm install odahu/odahu-flow-mlflow --name odahu-flow-mlflow --namespace odahu-flow \
    --values ./mlflow_values.yaml

Packaging service
If you install Open Policy Agent for ODAHU then you will need to configure service
account for a Kubernetes Job that install some ODAHU Manifests using ODAHU API.
This Service account should have role odahu-admin.
Next values with service account credentials are required :

values.yaml

1 # Service account used to upload odahu resources via odahuflowctl
2 resource_uploader_sa:
3   client_id: some-client-id
4   client_secret: client-secret
5 
6 # OpenID provider url
7 oauth_oidc_issuer_url: ""

Install odahu-flow-packagers Helm chart:

$ helm install odahu/odahu-flow-packagers --name odahu-flow-packagers --namespace odahu-flow

Install additional services (optional)
In order to provide additional functionality, ODAHU team also developed several
Helm charts to install them into Kubernetes cluster. These are:

• odahu-flow-monitoring - Helm chart providing installation and setup of

• Prometheus operator - to collect various metrics from models trainings
• Grafana with set of custom dashboards - to visualize these metrics
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• odahu-flow-k8s-gke-saa - Helm chart providing installation and setup of
k8s-gke-service-account-assigner service.

Delete ODAHU services
To delete and purge Helm chart run:

$ helm delete --purge odahu-flow

To clean up remaining CustomResourceDefinitions execute following command:

$ kubectl get crd | awk '/odahuflow/ {print $1}' | xargs -n1 kubectl delete crd

To purge everything installed in previous steps with single command, run

$ helm delete --purge odahu-flow-packagers odahu-flow-mlflow odahu-flow &&\
  kubectl delete namespace odahu-flow &&\
  for i in training packaging deployment; do \
    kubectl delete namespace odahu-flow-${i} || true; done &&\
  kubectl get crd | awk '/odahuflow/ {print $1}' | xargs -n1 kubectl delete crd &&\
  kubectl -n istio-system delete job.batch/odahu-flow-feedback-rq-catcher-patcher &&\
  kubectl -n istio-system delete sa/odahu-flow-feedback-rq-catcher-patcher &&\
  kubectl -n istio-system delete cm/odahu-flow-feedback-rq-catcher-patch

Conclusion
After successful deployment of a cluster, you may proceed to Quickstart section
and learn how to perform base ML operations such as train, package and deploy
steps.
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Cluster Quickstart
In this tutorial you will learn how to Train, Package and Deploy a model from scratch
on Odahu. Once deployed, the model serves RESTful requests, and makes a
prediction when provided user input.
Odahu’s API server performs Train, Package, and Deploy operations for you, using its
REST API.

Prerequisites
• Odahu cluster
• MLFlow and REST API Packager (installed by default)
• Odahu-flow CLI or Plugin for JupyterLab (installation instructions: CLI, Plugin)
• JWT token from API (instructions)
• Google Cloud Storage bucket on Google Compute Platform
• GitHub repository and an ssh key to connect to it

Tutorial
In this tutorial, you will learn how to:

1. Create an MLFlow project
2. Setup Connections
3. Train a model
4. Package the model
5. Deploy the packaged model
6. Use the deployed model

This tutorial uses a dataset to predict the quality of the wine based on quantitative
features like the wine’s fixed acidity, pH, residual sugar, and so on.
Code for the tutorial is available on GitHub.

Create MLFlow project

Before Odahu cluster that meets prerequisites
After Model code that predicts wine quality

Create a new project folder:

$ mkdir wine && cd wine
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Create a training script:

$ touch train.py

Paste code into the file:
train.py

 1 import os
 2 import warnings
 3 import sys
 4 import argparse
 5 
 6 import pandas as pd
 7 import numpy as np
 8 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
 9 from sklearn.model_selection import train_test_split
10 from sklearn.linear_model import ElasticNet
11 
12 import mlflow
13 import mlflow.sklearn
14 
15 def eval_metrics(actual, pred):
16     rmse = np.sqrt(mean_squared_error(actual, pred))
17     mae = mean_absolute_error(actual, pred)
18     r2 = r2_score(actual, pred)
19     return rmse, mae, r2
20 
21 if __name__ == "__main__":
22     warnings.filterwarnings("ignore")
23     np.random.seed(40)
24 
25     parser = argparse.ArgumentParser()
26     parser.add_argument('--alpha')
27     parser.add_argument('--l1-ratio')
28     args = parser.parse_args()
29 
30     # Read the wine-quality csv file (make sure you're running this from the root of MLflow!)
31     wine_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "wine-quality.csv")
32     data = pd.read_csv(wine_path)
33 
34     # Split the data into training and test sets. (0.75, 0.25) split.
35     train, test = train_test_split(data)
36 
37     # The predicted column is "quality" which is a scalar from [3, 9]
38     train_x = train.drop(["quality"], axis=1)
39     test_x = test.drop(["quality"], axis=1)
40     train_y = train[["quality"]]
41     test_y = test[["quality"]]
42 
43     alpha = float(args.alpha)
44     l1_ratio = float(args.l1_ratio)
45 
46     with mlflow.start_run():
47         lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
48         lr.fit(train_x, train_y)
49 
50         predicted_qualities = lr.predict(test_x)
51 
52         (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
53 
54         print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
55         print("  RMSE: %s" % rmse)
56         print("  MAE: %s" % mae)
57         print("  R2: %s" % r2)
58 
59         mlflow.log_param("alpha", alpha)
60         mlflow.log_param("l1_ratio", l1_ratio)
61         mlflow.log_metric("rmse", rmse)
62         mlflow.log_metric("r2", r2)
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63         mlflow.log_metric("mae", mae)
64         mlflow.set_tag("test", '13')
65 
66         mlflow.sklearn.log_model(lr, "model")
67 
68         # Persist samples (input and output)
69         train_x.head().to_pickle('head_input.pkl')
70         mlflow.log_artifact('head_input.pkl', 'model')
71         train_y.head().to_pickle('head_output.pkl')
72         mlflow.log_artifact('head_output.pkl', 'model')

In this file, we:

• Start MLflow context on line 46
• Train ElasticNet model on line 48
• Set metrics, parameters and tags on lines 59-64
• Save model with name model (model is serialized and sent to the MLflow engine)

on line 66
• Save input and output samples (for persisting information about input and output

column names) on lines 69-72
Create an MLproject file:

$ touch MLproject

Paste code into the file:
MLproject

name: wine-quality-example
conda_env: conda.yaml
entry_points:
    main:
        parameters:
            alpha: float
            l1_ratio: {type: float, default: 0.1}
        command: "python train.py --alpha {alpha} --l1-ratio {l1_ratio}"

Note

Read more about MLproject structure on the official MLFlow docs.

Create a conda environment file:

$ touch conda.yaml

Paste code to the created file:
conda.yaml

name: example
channels:
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  - defaults
dependencies:
  - python=3.6
  - numpy=1.14.3
  - pandas=0.22.0
  - scikit-learn=0.19.1
  - pip:
    - mlflow==1.0.0

Note

All python packages that are used in training script must be listed in the
conda.yaml file.
Read more about conda environment on the official conda docs.

Make directory “data” and download the wine data set:
$ mkdir ./data
$ wget https://raw.githubusercontent.com/odahu/odahu-examples/develop/mlflow/sklearn/wine/data/wine-quality.csv -O ./data/wine-quality.csv

After this step the project folder should look like this:

.
├── MLproject
├── conda.yaml
├── data
│   └── wine-quality.csv
└── train.py

Setup connections

Before Odahu cluster that meets prerequisites
After Odahu cluster with Connections

Odahu Platform uses the concept of Connections to manage authorizations to
external services and data.
This tutorial requires three Connections:

• A GitHub repository, where the code is located
• A Google Cloud Storage folder, where input data is located (wine-quality.csv)
• A Docker registry, where the trained and packaged model will be stored for later

use
You can find more detailed documentation about a connection configuration here.
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Create a Connection to GitHub repository
Because odahu-examples repository already contains the required code we will just
use this repository. But feel free to create and use a new repository if you want.
Odahu is REST-powered, and so we encode the REST “payloads” in this tutorial in
YAML files. Create a directory where payloads files will be staged:

$ mkdir ./odahu-flow

Create payload:

$ touch ./odahu-flow/vcs_connection.odahu.yaml

Paste code into the created file:
vcs_connection.odahu.yaml

kind: Connection
id: odahu-flow-tutorial
spec:
  type: git
  uri: git@github.com:odahu/odahu-examples.git
  reference: origin/master
  keySecret: <paste here your base64-encoded key github ssh key>
  description: Git repository with odahu-flow-examples
  webUILink: https://github.com/odahu/odahu-examples

Note

Read more about GitHub ssh keys

Create a Connection using the Odahu-flow CLI:

$ odahuflowctl conn create -f ./odahu-flow/vcs_connection.odahu.yaml

Or create a Connection using Plugin for JupyterLab:

1. Open jupyterlab (available by <your.cluster.base.address>/jupyterhub);
2. Navigate to ‘File Browser’ (folder icon)
3. Select file ./odahu-flow/vcs_connection.odahu.yaml and in context menu

press submit button;

Create Connection to wine-quality.csv object storage
Create payload:

$ touch ./odahu-flow/wine_connection.odahu.yaml
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Paste this code into the file:
wine_connection.odahu.yaml

kind: Connection
id: wine-tutorial
spec:
  type: gcs
  uri: gs://<paste your bucket address here>/data-tutorial/wine-quality.csv
  region: <paste region here>
  keySecret: <paste base64-encoded key secret here>  # should be enclosed in single quotes
  description: Wine dataset

Create a connection using the Odahu-flow CLI or Plugin for JupyterLab, as in the
previous example.
If wine-quality.csv is not in the GCS bucket yet, use this command:

$ gsutil cp ./data/wine-quality.csv gs://<bucket-name>/data-tutorial/

Create a Connection to a docker registry
Create payload:

$ touch ./odahu-flow/docker_connection.odahu.yaml

Paste this code into the file:
docker_connection.odahu.yaml

kind: Connection  # type of payload
id: docker-tutorial
spec:
  type: docker
  uri: <past uri of your registry here>  # uri to docker image registry
  username: <paste your username here>
  password: <paste your base64-encoded password here>
  description: Docker registry for model packaging

Create the connection using Odahu-flow CLI or Plugin for JupyterLab, as in the
previous example.
Check that all Connections were created successfully:

- id: docker-tutorial
    description: Docker repository for model packaging
    type: docker
- id: odahu-flow-tutorial
    description: Git repository with odahu-flow-tutorial
    type: git
- id: models-output
    description: Storage for trainined artifacts
    type: gcs
- id: wine-tutorial
    description: Wine dataset
    type: gcs
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Congrats! You are now ready to train the model.

Train the model

Before Project code, hosted on GitHub
After Trained GPPI model (a Trained Model

Binary)

Create payload:

$ touch ./odahu-flow/training.odahu.yaml

Paste code into the file:
./odahu-flow/training.odahu.yaml

 1 kind: ModelTraining
 2 id: wine-tutorial
 3 spec:
 4   model:
 5     name: wine
 6     version: 1.0
 7   toolchain: mlflow  # MLFlow training toolchain integration
 8   entrypoint: main
 9   workDir: mlflow/sklearn/wine  # MLproject location (in GitHub)
10   data:
11     - connection: wine-tutorial
12       # Where to save a local copy of wine-quality.csv from wine-tutorial GCP connection
13       localPath: mlflow/sklearn/wine/wine-quality.csv
14   hyperParameters:
15     alpha: "1.0"
16   resources:
17     limits:
18        cpu: 4
19        memory: 4Gi
20     requests:
21        cpu: 2
22        memory: 2Gi
23    algorithmSource:
24      vcs:
25        connection: odahu-flow-tutorial

In this file, we:

• line 7: Set Odahu toolchain’s name to mlflow
• line 8: Reference main method in entry_points (which is defined for MLproject

files)
• line 9: Point workDir to the MLFlow project directory. (This is the directory that

has the MLproject in it.)
• line 10: A section defining input data
• line 11: connection id of the wine_connection.odahu.yaml (created in the

previous step)
• line 13: localPath relative (to Git repository root) path of the data file at the

training (docker) container where data were put
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• lines 14-15: Input hyperparameters, defined in MLProject file, and passed to main
method

• line 23: A section defining training source code
• line 24: vcs if source code located in a repository and objectStorage if in a

storage. Should not use both
• line 25: id of the vcs_connection.odahu.yaml (created in the previous step)

Train using Odahu-flow CLI:

$ odahuflowctl training create -f ./odahu-flow/training.odahu.yaml

Check Train logs:

$ odahuflowctl training logs --id wine-tutorial

The Train process will finish after some time.
To check the status run:

$ odahuflowctl training get --id wine-tutorial

When the Train process finishes, the command will output this YAML:

• state succeeded
• artifactName (filename of Trained Model Binary)

Or Train using the Plugin for JupyterLab:

1. Open jupyterlab
2. Open cloned repo, and then the folder with the project
3. Select file ./odahu-flow/training.odahu.yaml and in context menu press

submit button
You can see model logs using Odahu cloud mode in the left side tab (cloud icon) in
Jupyterlab

1. Open Odahu cloud mode tab
2. Look for TRAINING section
3. Press on the row with ID=wine
4. Press button LOGS to connect to Train logs

After some time, the Train process will finish. Train status is updated in column
status of the TRAINING section in the Odahu cloud mode tab. If the model training
finishes with success, you will see status=succeeded.
Then open Train again by pressing the appropriate row. Look at the Results section.
You should see:

• artifactName (filename of Trained Model Binary)
artifactName is the filename of the trained model. This model is in GPPI format. We
can download it from storage defined in the models-output Connection. (This
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connection is created during Odahu Platform installation, so we were not required to
create this Connection as part of this tutorial.)

Package the model

Before The trained model in GPPI Trained
Model Binary

After Docker image for the packaged model,
including a model REST API

Create payload:

$ touch ./odahu-flow/packaging.odahu.yaml

Paste code into the file:
./odahu-flow/packaging.odahu.yaml

1 kind: ModelPackaging
2 id: wine-tutorial
3 spec:
4   artifactName: "<fill-in>"  # Use artifact name from Train step
5   targets:
6     - connectionName: docker-tutorial  # Docker registry when output image will be stored
7       name: docker-push
8   integrationName: docker-rest  # REST API Packager

In this file, we:

• line 4: Set to artifact name from the Train step
• line 6: Set to docker registry, where output will be staged
• line 7: Specify the docker command
• line 8: id of the REST API Packager

Create a Package using Odahu-flow CLI:

$ odahuflowctl packaging create -f ./odahu-flow/packaging.odahu.yaml

Check the Package logs:

$ odahuflowctl packaging logs --id wine-tutorial

After some time, the Package process will finish.
To check the status, run:

$ odahuflowctl packaging get --id wine-tutorial

You will see YAML with updated Package resource. Look at the status section. You
can see:
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• image # This is the filename of the Docker image in the registry with the trained
model prediction, served via REST`.

Or run Package using the Plugin for JupyterLab:

1. Open jupyterlab
2. Open the repository that has the source code, and navigate to the folder with the

MLProject file
3. Select file ./odahu-flow/packaging.odahu.yaml and in the context menu press

the submit button
To view Package logs, use Odahu cloud mode in the side tab of your Jupyterlab

1. Open Odahu cloud mode tab
2. Look for PACKAGING section
3. Click on the row with ID=wine
4. Click the button for LOGS and view the Packaging logs

After some time, the Package process will finish. The status of training is updated in
column status of the PACKAGING section in the Odahu cloud mode tab. You should
see status=succeeded.
Then open PACKAGING again by pressing the appropriate row. Look at the Results
section. You should see:

• image (this is the filename of docker image in the registry with the trained model
as a REST service`);

Deploy the model

Before Model is packaged as image in the
Docker registry

After Model is served via REST API from the
Odahu cluster

Create payload:

$ touch ./odahu-flow/deployment.odahu.yaml

Paste code into the file:
./odahu-flow/deployment.odahu.yaml

1 kind: ModelDeployment
2 id: wine-tutorial
3 spec:
4   image: "<fill-in>"
5   predictor: odahu-ml-server
6   minReplicas: 1
7   imagePullConnectionID: docker-tutorial

In this file, we:
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• line 4: Set the image that was created in the Package step
• line 5: Set the predictor that indicates what Inference Server is used in the

image; Check `Predictors`_ for more;
• line 7: Set the connection ID to access the container registry where the image

lives
Create a Deploy using the Odahu-flow CLI:

$ odahuflowctl deployment create -f ./odahu-flow/deployment.odahu.yaml

After some time, the Deploy process will finish.
To check its status, run:

$ odahuflowctl deployment get --id wine-tutorial

Or create a Deploy using the Plugin for JupyterLab:

1. Open jupyterlab
2. Open the cloned repo, and then the folder with the MLProject file
3. Select file ./odahu-flow/deployment.odahu.yaml. In context menu press the

submit button
You can see Deploy logs using the Odahu cloud mode side tab in your Jupyterlab

1. Open the Odahu cloud mode tab
2. Look for the DEPLOYMENT section
3. Click the row with ID=wine

After some time, the Deploy process will finish. The status of Deploy is updated in
column status of the DEPLOYMENT section in the Odahu cloud mode tab. You
should see status=Ready.

Use the deployed model

Step input data The deployed model

After the model is deployed, you can check its API in Swagger:
Open <your-odahu-platform-host>/service-catalog/swagger/index.html and
look and the endpoints:

1. GET /model/wine-tutorial/api/model/info – OpenAPI model specification;
2. POST /model/wine-tutorial/api/model/invoke – Endpoint to do predictions;

But you can also do predictions using the Odahu-flow CLI.
Create a payload file:

$ touch ./odahu-flow/r.json
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Add payload for /model/wine-tutorial/api/model/invoke according to the
OpenAPI schema. In this payload we provide values for model input variables:

./odahu-flow/r.json

{
  "columns": [
    "fixed acidity",
    "volatile acidity",
    "citric acid",
    "residual sugar",
    "chlorides",
    "free sulfur dioxide",
    "total sulfur dioxide",
    "density",
    "pH",
    "sulphates",
    "alcohol"
  ],
  "data": [
    [
      7,
      0.27,
      0.36,
      20.7,
      0.045,
      45,
      170,
      1.001,
      3,
      0.45,
      8.8
    ]
  ]
}

Invoke the model to make a prediction:

$ odahuflowctl model invoke --mr wine-tutorial --json-file r.json

./odahu-flow/r.json

{"prediction": [6.0], "columns": ["quality"]}

Congrats! You have completed the tutorial.
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Local Quickstart
In this tutorial, we will walk through the training, packaging and serving of a machine
learning model locally by leveraging ODAHUFlow’s main components.

Prerequisites
• Docker engine (at least version 17.0) with access from current user (docker ps

should executes without errors)
• Odahu-flow CLI
• git
• wget

Tutorial
We will consider the wine model from Cluster Quickstart. But now, we will train,
package and deploy the model locally.

Note

Code for the tutorial is available on GitHub.

odahuflowctl has commands for local training and packaging.

$ odahuflowctl local --help

To train a model locally, you have to provide an ODAHU model training manifest and
training toolchain. odahuflowctl tries to find them on your local filesystem. If it can
not do it, then the CLI requests to ODAHU API.

Local training arguments:

  --train-id, --id TEXT        Model training ID  [required]
  -f, --manifest-file PATH     Path to a ODAHU-flow manifest file
  -d, --manifest-dir PATH      Path to a directory with ODAHU-flow manifests

The mlflow/sklearn/wine/odahuflow directory already contains training manifest file
for wine model. If we don’t have a running ODAHUFlow API server, we should create
toolchain manifest manually.
Paste the toolchain manifest into the mlflow/sklearn/wine/odahuflow/toolchain.yaml
file:

kind: ToolchainIntegration
id: mlflow
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spec:
  defaultImage: "odahu/odahu-flow-mlflow-toolchain:1.1.0-rc11"
  entrypoint: /opt/conda/bin/odahu-flow-mlflow-runner

We are ready to launch the local training. Copy, past and execute the following
command.

$ odahuflowctl local train run -d mlflow/sklearn/wine/odahuflow --id wine

Warning

MLFlow metrics does not propagate to the tracking server during training. This will
be implemented in the near future.

odahuflowctl trains the model, verify that it satisfy the GPPI spec and save GPPI
binary in the host filesystem. Execute the following command to take a look at all
trained models in the default output directory.

$ odahuflowctl local train list

Our next step is to package the trained model to a REST service. Like for local
training, local packaging requires a model packaging and packaging integration
manifests.

Local packaging arguments:

  --pack-id, --id TEXT            Model packaging ID  [required]
  -f, --manifest-file PATH        Path to a ODAHU-flow manifest file
  -d, --manifest-dir PATH         Path to a directory with ODAHU-flow manifest files
  --artifact-path PATH            Path to a training artifact
  -a, --artifact-name TEXT        Override artifact name from file

Paste the packaging integration manifest into the
mlflow/sklearn/wine/odahuflow/packager.yaml file:

kind: PackagingIntegration
id: docker-rest
spec:
  entrypoint: "/usr/local/bin/odahu-flow-pack-to-rest"
  defaultImage: "odahu/odahu-flow-packagers:1.1.0-rc11"
  privileged: true
  schema:
    targets:
      - name: docker-push
        connectionTypes: ["docker", "ecr"]
        required: true
      - name: docker-pull
        connectionTypes: ["docker", "ecr"]
        required: false
    arguments:
      properties:
        - name: dockerfileAddCondaInstallation
          parameters:
            - name: description
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              value: Add conda installation code to training.Dockerfile
            - name: type
              value: boolean
            - name: default
              value: true
        - name: dockerfileBaseImage
          parameters:
            - name: description
              value: Base image for training.Dockerfile.
            - name: type
              value: string
            - name: default
              value: 'odahu/odahu-flow-docker-packager-base:1.1.0-rc11'
        - name: dockerfileCondaEnvsLocation
          parameters:
            - name: description
              value: Conda env location in training.Dockerfile.
            - name: type
              value: string
            - name: default
              value: /opt/conda/envs/
        - name: host
          parameters:
            - name: description
              value: Host to bind.
            - name: type
              value: string
            - name: default
              value: 0.0.0.0
        - name: port
          parameters:
            - name: description
              value: Port to bind.
            - name: type
              value: integer
            - name: default
              value: 5000
        - name: timeout
          parameters:
            - name: description
              value: Serving timeout in seconds.
            - name: type
              value: integer
            - name: default
              value: 60
        - name: workers
          parameters:
            - name: description
              value: Count of serving workers.
            - name: type
              value: integer
            - name: default
              value: 1
        - name: threads
          parameters:
            - name: description
              value: Count of serving threads.
            - name: type
              value: integer
            - name: default
              value: 4
        - name: imageName
          parameters:
            - name: description
              value: |
                This option provides a way to specify the Docker image name. You can hardcode the full name or specify a template. Available template values:
                  - Name (Model Name)
                  - Version (Model Version)
                  - RandomUUID
                The default value is '{{ Name }}/{{ Version }}:{{ RandomUUID }}'.
                Image name examples:
                  - myservice:123
                  - {{ Name }}:{{ Version }}
            - name: type
              value: string
            - name: default
              value: "{{ Name }}-{{ Version }}:{{ RandomUUID }}"

Choose the name of trained artifact and execute the following command:
$ odahuflowctl --verbose local pack run -d mlflow/sklearn/wine/odahuflow --id wine -a wine-1.0-wine-1.0-01-Mar-2020-18-33-35

The last lines of output must contains a name of model REST service.
At the last step, we run our REST service and make a predict.

$ docker run -it --rm -p 5000:5000 wine-1.0:cbf184d0-4b08-45c4-8efb-17e28a3b537e

$ odahuflowctl model invoke --url http://0:5000 --json-file mlflow/sklearn/wine/odahuflow/request.json
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Invoke ODAHU models for prediction
You want to call the model that was deployed on ODAHU programmatically
You can call ODAHU models using REST API or using Python SDK

Python SDK
1. Install python SDK

pip install odahu-flow-sdk

2. Configure SDK
By default SDK config is located in ~/.odahuflow/config
But you can override it location using ODAHUFLOW_CONFIG environment variable
Configure next values in the config

[general]
api_url = https://replace.your.models.host
api_issuing_url = https://replace.your.oauth2.token.url

3. In python use ModelClient to invoke models

from odahuflow.sdk.clients.model import ModelClient, calculate_url
from odahuflow.sdk.clients.api import RemoteAPIClient
from odahuflow.sdk import config

# Change model deployment name to model name which you want to invoke
MODEL_DEPLOYMENT_NAME = "<model-deployment-name>"

# Get api token using client credentials flow via Remote client
remote_api = RemoteAPIClient(client_id='<your-client-id>', client_secret='<your-secret>')
remote_api.info()

# Build model client and invoke models
client = ModelClient(
    calculate_url(config.API_URL, model_deployment=MODEL_DEPLOYMENT_NAME),
    remote_api.authenticator.token
)

# Get swagger specification of model service
print(client.info())

# Invoke model
print(client.invoke(columns=['col1', 'col2'], data=[
    ['row1_at1', 'row1_at2'],
    ['row2_at1', 'row2_at2'],
]))

REST
If you use another language you can use pure REST to invoke models

Invoke ODAHU models for prediction

43



You should get token by yourself using OpenID provider and OAuth2 Client
Credentials Grant
Then call ODAHU next way
To get the swagger definition of model service

curl -X GET "https://replace.your.models.host/model/${MODEL_DEPLOYMENT_NAME}/api/model/info" \
            -H "accept: application/json" \
            -H "Authorization: Bearer <token>"

To invoke the model

curl -X POST "https://replace.your.models.host/model/${MODEL_DEPLOYMENT_NAME}/api/model/invoke" \
            -H "accept: application/json" \
            -H "Authorization: Bearer <token>" \
            -d @body.json
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API
API service manages Odahu Platform entities.

• Connections
• Trainings
• Packaging
• Deployments

API service can provide the following data, when queried:

• Model Train and Deploy logs
• Model Trainer Metrics
• Model Trainer Tags

API-provided URLs
All information about URLs that API service provides can be viewed using the
auto-generated, interactive Swagger page. It is located at
<api-address>/swagger/index.html. You can read all of the up-to-date
documentation and invoke all methods (allowed for your account) right from this web
page.

Authentication and authorization
API service distributed in odahu-flow-core helm chart with enabled authorization
and pre-defined OPA policies. If Security Subsystem is installed, then all requests
to API service will be enforced using pre-defined OPA policies.

Implementation details
API service is a REST server, written in GoLang. For easy integration, it provides a
Swagger endpoint with up-to-date protocol information.

Technologies used GoLang
Distribution representation Docker Image
Source code location packages/operator
Can be used w/o Odahu Platform? Yes
Does it connect to other services? Yes (Kubernetes API)
Can it be deployed locally? If a local Kubernetes cluster is present
Does it provide any interface? Yes (HTTP REST API)
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Feedback aggregator
Feedback aggregator is a service that provides a Model Feedback API and
gathers input and output prediction requests

API-provided URLs
Model Feedback API provide just single endpoint that allow you send feedback on
a prediction request:
POST /api/v1/feedback
Information about this URL can be viewed using the auto-generated, interactive
Swagger page. It is located at <api-address>/swagger/index.html. You can read
all of the up-to-date documentation and invoke this endpoint (allowed for your
account) right from this web page.

Authentication and authorization
Feedback aggregator distributed in odahu-flow-core helm chart with enabled
authorization and pre-defined OPA policies. If Security Subsystem is installed, then
all requests to Model Feedback API service will be enforced using pre-defined OPA
policies.

Implementation details
Feedback aggregator contains two major subcomponents

• REST Server provides Model Feedback API and sends them to configured
fluentd server

• Envoy Proxy tap filter catches all requests and responses of deployed models and
sends this info to configured fluentd server

Technologies used GoLang, Envoy Proxy
Distribution representation Docker Image
Source code location packages/operator
Can be used w/o Odahu Platform? No
Does it connect to other services? Yes (Fluentd, Envoy Proxy)
Can it be deployed locally? If a local Kubernetes cluster is present
Does it provide any interface? Yes (HTTP REST API)
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Operator
Operator monitors Odahu-provided Kubernetes (K8s) Custom Resources. This gives
Operator the ability to manage Odahu entities using K8s infrastructure (Secrets,
Pods, Services, etc). The K8s entities that belong to Odahu are referred to as
Odahu-flow’s CRDs.
Operator is a mandatory component in Odahu clusters.

Implementation details
Operator is a Kubernetes Operator, written using Kubernetes Go packages.

Technologies used GoLang
Distribution representation Docker Image
Source code location packages/operator
Can be used w/o Odahu Platform? Yes
Does it connect to another services? Yes (Kubernetes API)
Can be deployed locally? If local Kubernetes cluster is present
Does it provide any interface? No
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MLFlow Trainer
Odahu provides a Trainer Extension for the popular MLflow framework.
This allows model Training in Python, and provides support for MLflow APIs. Trained
models are packaged using the General Python Prediction Interface.

Limitations
• Odahu supports Python (v. 3) libraries (e.g. Keras, Sklearn, TensorFlow, etc.)
• MLeap is not supported
• Required packages (system and python) must be declared in a conda

environment file
• Train must save only one model, using one MLproject entry point method.

Otherwise an exception will occur
• Input and output columns should be mapped to the specially-named
head_input.pkl and head_output.pkl files to make it into the Packaged artifact

• Training code should avoid direct usage of MLflow client libraries

Implementation Details
Support official
Language Python 3.6+

Source code is available on GitHub.
Low-level integration details are provided here.

MLFlow Trainer
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Security subsystem
Security subsystem is distributed as a helm chart and relies on OpenPolicyAgent to
make decisions about authorization and Istio to enforce authorization for requests to
the protected services.
You can read about ODAHU security concepts in an appropriate docs section

Implementation details

Helm chart deploys

• Webhook server that injects OpenPolicyAgent sidecars into pods that labeled by
odahu-flow-authorization=enabled

• EnvoyFilter that configures Istio-proxy sidecars located in pods labeled by
odahu-flow-authorization=enabled to force authentication and authorization
for all incoming http requests

• ConfigMap with common policy that included into all OpenPolicyAgent sidecars
and implements masking of a sensitive data

• ConfigMap with default policy that included into OpenPolicyAgent sidecars when
pod does not specify ConfigMap with its polices

When the webhook server deploys OpenPolicyAgent sidecar, it attaches policies from
ConfigMap. ConfigMap can be found by the value of the pod label
opa-policy-config-map-name. If this label is missed, then the default policy will be
used. Default policy – reject all requests.
Different ODAHU components such as API and Feedback aggregator are distributed
with a pre-defined set of OpenPolicyAgent policies. They create ConfigMap with their
policies during the deployment process.
If you change ConfigMap with policies then the appropriate pod must be restarted to
refresh its policies.

Technologies used OpenPolicyAgent, Istio
Distribution representation Helm chart
Source code location packages/operator
Can be used w/o Odahu Platform? No
Does it connect to other services? Yes (Kubernetes, OpenPolicyAgent, Istio)
Can it be deployed locally? If a local Kubernetes cluster is present
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Does it provide any interface? No
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Metrics
Odahu is pluggable and can integrate with a variety of metrics monitoring tools,
allowing monitoring for:

• Model training metrics
• Model performance metrics
• System metrics (e.g. operator counters)

Odahu’s installation Helm chart boostraps a Prometheus operator to persist metrics
and Grafana dashboard to display them.
Alternative integrations can be similarly constructed that swap in other monitoring
solutions.
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Airflow
Odahu-flow provides a set of custom operators that allow you to interact with a
Odahu cluster using Apache Airflow

Connections
The Airflow plugin should be authorized by Odahu. Authorization is implemented
using regular Airflow Connections
All custom Odahu-flow operators accept api_connection_id as a parameter that refers
to Odahu-flow Connection

Odahu-flow Connection
The Odahu connection provides access to a Odahu cluster for Odahu custom
operators.

Configuring the Connection
Host (required)

The host to connect to. Usually available at: odahu.<cluster-base-url>
Type (required)

HTTP
Schema (optional)

https
Login (not required)

Leave this field empty
Password (required)

The client secret. The client MAY omit the parameter if the client secret is an
empty string. See more

Extra (Required)
Specify the extra parameters (as json dictionary) that can be used in Odahu
connection. Because Odahu uses OpenID authorization, additional OpenID/OAuth
2.0 parameters may be supplied here.
The following parameters are supported and must be defined:

• auth_url: url of authorization server
• client_id: The client identifier issued to the client during the registration

process. See more
• scope: Access Token Scope

Example “extras” field:
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{
   "auth_url": "https://keycloak.<my-app-domain>",
   "client_id": "my-app",
   "scope": "openid profile email offline_access groups",
}

Custom operators
This chapter describes the custom operators provided by Odahu.

Train, Pack, Deploy operators

class TrainingOperator (training=None, api_connection_id=None, *args, **kwargs)
The operator that runs Train phase
Use args and kwargs to override other operator parameters

Parameters
: • training (odahuflow.sdk.models.ModelTraining) – describes the

Train phase
• api_connection_id (str) – conn_id of Odahu-flow Connection

class TrainingSensor (training_id=None, api_connection_id=None, *args, **kwargs)
The operator that waits for Train phase is finished
Use args and kwargs to override other operator parameters

Parameters
: • training_id (str) – Train id waits for

• api_connection_id (str) – conn_id of Odahu-flow Connection

class PackagingOperator (packaging=None, api_connection_id=None,
trained_task_id: str = "", *args, **kwargs)

The operator that runs Package phase
Use args and kwargs to override other operator parameters

Parameters
: • packaging (odahuflow.sdk.models.ModelPackaging) –

describes the Package phase
• api_connection_id (str) – conn_id of Odahu-flow Connection
• trained_task_id (str) – finished task id of TrainingSensor

class PackagingSensor (training_id=None, api_connection_id=None, *args,
**kwargs)

The operator that waits for Package phase is finished
Use args and kwargs to override other operator parameters

Parameters
: • packaging_id (str) – Package id waits for

• api_connection_id (str) – conn_id of Odahu-flow Connection
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class DeploymentOperator (deployment=None, api_connection_id=None, *args,
**kwargs)

The operator that runs Deploy phase
Use args and kwargs to override other operator parameters

Parameters
: • packaging (odahuflow.sdk.models.ModelDeployment) –

describes the Deploy phase
• api_connection_id (str) – conn_id of Odahu-flow Connection
• packaging_task_id (str) – finished task id of PackagingSensor

class DeploymentSensor (training_id=None, api_connection_id=None, *args,
**kwargs)

The operator that waits for Deploy phase is finished
Use args and kwargs to override other operator parameters

Parameters
: • deployment_id (str) – Deploy id waits for

• api_connection_id (str) – conn_id of Odahu-flow Connection

Model usage operators
These operators are used to interact with deployed models.

class ModelInfoRequestOperator (self, model_deployment_name: str,
api_connection_id: str, model_connection_id: str, md_role_name: str = "", *args,
**kwargs)

The operator what extract metadata of deployed model.
Use args and kwargs to override other operator parameters

Parameters
: • model_deployment_name (str) – Model deployment name

• api_connection_id (str) – conn_id of Odahu-flow Connection
• model_connection_id (str) – id of Odahu Connection for

deployed model access
• md_role_name (str) – Role name

class ModelPredictRequestOperator (self, model_deployment_name: str,
api_connection_id: str, model_connection_id: str, request_body: typing.Any,
md_role_name: str = "", *args, **kwargs)

The operator request prediction using deployed model.
Use args and kwargs to override other operator parameters
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Parameters
: • model_deployment_name (str) – <paste>

• api_connection_id (str) – conn_id of Odahu-flow Connection
• model_connection_id (str) – id of Odahu Connection for

deployed model access
• request_body (dict) – JSON Body with model parameters
• md_role_name (str) – Role name

Helper operators
These operators are helpers to simplify using Odahu-flow.

class GcpConnectionToOdahuConnectionOperator (self, api_connection_id: str,
google_cloud_storage_conn_id: str, conn_template: typing.Any, *args, **kwargs)

Create Odahu-flow Connection using GCP Airflow Connection
Use args and kwargs to override other operator parameters

Parameters
: • api_connection_id (str) – conn_id of Odahu-flow Connection

• google_cloud_storage_conn_id (str) – conn_id to Gcp
Connection

• conn_template
(odahuflow.sdk.models.connection.Connection) – Odahu-flow
Connection template

How to describe operators
When you initialize Odahu custom operators such as TrainingOperator,
PackagingOperator, or DeploymentOperator you should pass odahu resource
payload as a parameter.
Actually, this is a payload that describes a resource that will be created at
Odahu-flow cluster. You should describe such payloads using odahuflow.sdk models

Creating training payload

training = ModelTraining(
    id=training_id,
    spec=ModelTrainingSpec(
        model=ModelIdentity(
            name="wine",
            version="1.0"
        ),
        toolchain="mlflow",
        entrypoint="main",
        work_dir="mlflow/sklearn/wine",
        hyper_parameters={
            "alpha": "1.0"
        },
        data=[
            DataBindingDir(

How to describe operators

55



                conn_name='wine',
                local_path='mlflow/sklearn/wine/wine-quality.csv'
            ),
        ],
        resources=ResourceRequirements(
            requests=ResourceList(
                cpu="2024m",
                memory="2024Mi"
            ),
            limits=ResourceList(
                cpu="2024m",
                memory="2024Mi"
            )
        ),
        vcs_name="odahu-flow-examples"
    ),
)

But if you did some RnD work with Odahu-flow previously, it’s likely that you already
have yaml/json files that describe the same payloads. You can reuse them to create
odahuflow.sdk models automatically

Using plain yaml/json text

from odahuflow.airflow.resources import resource

packaging_id, packaging = resource("""
id: airlfow-wine
kind: ModelPackaging
spec:
  artifactName: "<fill-in>"
  targets:
    - connectionName: docker-ci
      name: docker-push
  integrationName: docker-rest
""")

Or refer to yaml/json files that must be located at Airflow DAGs folder or Airflow
Home folder (these folders are configured at airflow.cfg file)

Creating training payload

from odahuflow.airflow.resources import resource
training_id, training = resource('training.odahuflow.yaml')

In this file, we refer to file training.odahuflow.yaml that is located at airflow dag’s
folder
For example, if you use Google Cloud Composer then you can locate your yamls
inside DAGs bucket and refer to them by relative path:

gsutil cp ~/.training.odahuflow.yaml gs://<your-composer-dags-bucket>/

DAG example
The example of the DAG that uses custom Odahu-flow operators is shown below.
Four DAGs are described.

How to describe operators

56

https://cloud.google.com/composer/


dag.py
  1 from datetime import datetime
  2 from airflow import DAG
  3 from airflow.contrib.operators.gcs_to_gcs import GoogleCloudStorageToGoogleCloudStorageOperator
  4 from airflow.models import Variable
  5 from airflow.operators.bash_operator import BashOperator
  6 from odahuflow.sdk.models import ModelTraining, ModelTrainingSpec, ModelIdentity, ResourceRequirements, ResourceList, \
  7     ModelPackaging, ModelPackagingSpec, Target, ModelDeployment, ModelDeploymentSpec, Connection, ConnectionSpec, \
  8     DataBindingDir
  9 
 10 from odahuflow.airflow.connection import GcpConnectionToOdahuConnectionOperator
 11 from odahuflow.airflow.deployment import DeploymentOperator, DeploymentSensor
 12 from odahuflow.airflow.model import ModelPredictRequestOperator, ModelInfoRequestOperator
 13 from odahuflow.airflow.packaging import PackagingOperator, PackagingSensor
 14 from odahuflow.airflow.training import TrainingOperator, TrainingSensor
 15 
 16 default_args = {
 17     'owner': 'airflow',
 18     'depends_on_past': False,
 19     'start_date': datetime(2019, 9, 3),
 20     'email_on_failure': False,
 21     'email_on_retry': False,
 22     'end_date': datetime(2099, 12, 31)
 23 }
 24 
 25 api_connection_id = "odahuflow_api"
 26 model_connection_id = "odahuflow_model"
 27 
 28 gcp_project = Variable.get("GCP_PROJECT")
 29 wine_bucket = Variable.get("WINE_BUCKET")
 30 
 31 wine_conn_id = "wine"
 32 wine = Connection(
 33     id=wine_conn_id,
 34     spec=ConnectionSpec(
 35         type="gcs",
 36         uri=f'gs://{wine_bucket}/data/wine-quality.csv',
 37         region=gcp_project,
 38     )
 39 )
 40 
 41 training_id = "airlfow-wine"
 42 training = ModelTraining(
 43     id=training_id,
 44     spec=ModelTrainingSpec(
 45         model=ModelIdentity(
 46             name="wine",
 47             version="1.0"
 48         ),
 49         toolchain="mlflow",
 50         entrypoint="main",
 51         work_dir="mlflow/sklearn/wine",
 52         hyper_parameters={
 53             "alpha": "1.0"
 54         },
 55         data=[
 56             DataBindingDir(
 57                 conn_name='wine',
 58                 local_path='mlflow/sklearn/wine/wine-quality.csv'
 59             ),
 60         ],
 61         resources=ResourceRequirements(
 62             requests=ResourceList(
 63                 cpu="2024m",
 64                 memory="2024Mi"
 65             ),
 66             limits=ResourceList(
 67                 cpu="2024m",
 68                 memory="2024Mi"
 69             )
 70         ),
 71         vcs_name="odahu-flow-examples"

 72     ),
 73 )
 74 
 75 packaging_id = "airlfow-wine"
 76 packaging = ModelPackaging(
 77     id=packaging_id,
 78     spec=ModelPackagingSpec(
 79         targets=[Target(name="docker-push", connection_name="docker-ci")],
 80         integration_name="docker-rest"
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 81     ),
 82 )
 83 
 84 deployment_id = "airlfow-wine"
 85 deployment = ModelDeployment(
 86     id=deployment_id,
 87     spec=ModelDeploymentSpec(
 88         min_replicas=1,
 89     ),
 90 )
 91 
 92 model_example_request = {
 93     "columns": ["alcohol", "chlorides", "citric acid", "density", "fixed acidity", "free sulfur dioxide", "pH",
 94                 "residual sugar", "sulphates", "total sulfur dioxide", "volatile acidity"],
 95     "data": [[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66],
 96              [12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]
 97 }
 98 
 99 dag = DAG(
100     'wine_model',
101     default_args=default_args,
102     schedule_interval=None
103 )
104 
105 with dag:
106     data_extraction = GoogleCloudStorageToGoogleCloudStorageOperator(
107         task_id='data_extraction',
108         google_cloud_storage_conn_id='wine_input',
109         source_bucket=wine_bucket,
110         destination_bucket=wine_bucket,
111         source_object='input/*.csv',
112         destination_object='data/',
113         project_id=gcp_project,
114         default_args=default_args
115     )
116     data_transformation = BashOperator(
117         task_id='data_transformation',
118         bash_command='echo "imagine that we transform a data"',
119         default_args=default_args
120     )
121     odahuflow_conn = GcpConnectionToOdahuConnectionOperator(
122         task_id='odahuflow_connection_creation',
123         google_cloud_storage_conn_id='wine_input',
124         api_connection_id=api_connection_id,
125         conn_template=wine,
126         default_args=default_args
127     )
128 
129     train = TrainingOperator(
130         task_id="training",
131         api_connection_id=api_connection_id,
132         training=training,
133         default_args=default_args
134     )
135 
136     wait_for_train = TrainingSensor(
137         task_id='wait_for_training',
138         training_id=training_id,
139         api_connection_id=api_connection_id,
140         default_args=default_args
141     )
142 
143     pack = PackagingOperator(
144         task_id="packaging",
145         api_connection_id=api_connection_id,
146         packaging=packaging,
147         trained_task_id="wait_for_training",
148         default_args=default_args
149     )
150 
151     wait_for_pack = PackagingSensor(
152         task_id='wait_for_packaging',
153         packaging_id=packaging_id,

154         api_connection_id=api_connection_id,
155         default_args=default_args
156     )
157 
158     dep = DeploymentOperator(
159         task_id="deployment",
160         api_connection_id=api_connection_id,
161         deployment=deployment,
162         packaging_task_id="wait_for_packaging",
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163         default_args=default_args
164     )
165 
166     wait_for_dep = DeploymentSensor(
167         task_id='wait_for_deployment',
168         deployment_id=deployment_id,
169         api_connection_id=api_connection_id,
170         default_args=default_args
171     )
172 
173     model_predict_request = ModelPredictRequestOperator(
174         task_id="model_predict_request",
175         model_deployment_name=deployment_id,
176         api_connection_id=api_connection_id,
177         model_connection_id=model_connection_id,
178         request_body=model_example_request,
179         default_args=default_args
180     )
181 
182     model_info_request = ModelInfoRequestOperator(
183         task_id='model_info_request',
184         model_deployment_name=deployment_id,
185         api_connection_id=api_connection_id,
186         model_connection_id=model_connection_id,
187         default_args=default_args
188     )
189 
190     data_extraction >> data_transformation >> odahuflow_conn >> train
191     train >> wait_for_train >> pack >> wait_for_pack >> dep >> wait_for_dep
192     wait_for_dep >> model_info_request
193     wait_for_dep >> model_predict_request

In this file, we create four dags:

• DAG on line 190 extract and transform data, create Odahu-flow connection and
run Train

• DAG on line 191 sequentially run phases Train, Package, Deploy
• DAG on line 192 wait for model deploy and then extract schema of model predict

API
• DAG on line 193 wait for model deploy and then invoke model prediction API
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JupyterLab extension
Odahu-flow provides the JupyterLab extension that allows you to interact with an
Odahu cluster from JupyterLab web-based IDEs.

Installation
Prerequisites:

• Python 3.6 or higher
• Jupyterlab GUI
• Preferable to use Google Chrome or Mozilla Firefox browsers

To install the extension, perform the following steps:

pip install odahu-flow-jupyterlab-plugin
jupyter serverextension enable --sys-prefix --py odahuflow.jupyterlab
jupyter labextension install odahu-flow-jupyterlab-plugin

Another option is prebuilt Jupyterlab Docker Image with the extension.

Configuration
The extension can be configured though the environment variables.

Environm
ent name Default Value example Description
DEFAULT
_API_EN
DPOINT

https://odahu.company.co
m/

Default URL to the
Odahu-flow API server

API_AUT
H_ENABL
ED

true true Change the value to false
if authorization is disabled
on the Odahu-flow API
server

ODAHUF
LOWCTL_
OAUTH_
AUTH_UR
L

https://keycloak.company.
org/auth/realms/master/pr
otocol/openid-connect/aut
h

Keycloak authorization
endpoint

JUPYTER_
REDIREC
T_URL

http://localhost:8888 JupyterLab external URL

JupyterLab extension
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ODAHUF
LOWCTL_
OAUTH_
CLIENT_I
D

Oauth client ID

ODAHUF
LOWCTL_
OAUTH_
CLIENT_S
ECRET

Oauth2 client secret

To enable SSO, you should provide the following options:

• ODAHUFLOWCTL_OAUTH_AUTH_URL
• JUPYTER_REDIRECT_URL
• ODAHUFLOWCTL_OAUTH_CLIENT_SECRET
• ODAHUFLOWCTL_OAUTH_CLIENT_ID

Login
To authorize on an Odahu-flow API service in the Jupyterlab extension, you should
perform the following steps:

• Copy and paste the Odahu-flow API service URL.
• Open an API server URL in a browser to get the token. Copy and paste this

token in the login form.

Usage
Below we consider all views of the JupyterLab extension.

Templates
The extension provides predefined list of API file templates. You can create a file from
a template.
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Main view
The main view contains all Odahu-flow entities. You can view or delete them.
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Log viewer
For troubleshooting, you can get access to the training, packaging or deployment
logs. If the job is running then logs will be updated in runtime.
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Submit resources
You can create any Odahu-flow entities from the extension. The button Submit only
appears in the context menu when file ends with .yaml or json.
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Odahuflowctl
Odahuflowctl (odahuflowctl) is a command-line interface for interacting with
Odahu-flow API service.

Prerequisites:
• Python 3.6 or higher

Installation
Odahu-flow CLI is available in PyPi repository. You should execute the following
command to install odahuflowctl:

pip install odahu-flow-cli
odahuflowctl --version

Help
To read odahuflowctl help, you should use the following command:

odahuflowctl --help

for a specific command, for example, get list of model deployments:

odahuflowctl deployment get --help

Login
There are two authentication types for Odahu CLI.

Specifying of a token explicitly
You should open an API server URL in a browser to get the login command. The
command already contains your token. Copy and paste provided command into your
shell.
Example of command:

odahuflowctl login --url <api-url> --token <your-token>

Odahuflowctl
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Sign in interactively
This method will use a web browser to sign in.
Run the login command:

odahuflowctl login --url <api-url>

Odahu CLI will open an IAM server in your default browser. Sign in with your account
credentials.

Completion
odahuflowctl cli supports completion for following shells: bash, zsh, fish,
PowerShell.
To activate it, evaluate the output of
odahuflowctl completion <YOUR_SHELL>.<YOURSHELL> is the optional, it can be
automatically identified.
Bash example:

source <(odahuflowctl completion bash)

PowerShell example:

odahuflowctl completion > $HOME\.odahuflow\odahu_completion.ps1;
. $HOME\.odahuflow\odahu_completion.ps1;
Remove-Item $HOME\.odahuflow\odahu_completion.ps1

To activate completion automatically in any new shell, you can save the completion
code to a file and add it to your shell profile.
Bash example:

odahuflowctl completion bash > ${HOME}/.odahuflow/odahuflowctl_completion.sh
(echo ""; echo "source ${HOME}/.odahuflow/odahuflowctl_completion.sh"; echo "") >> ${HOME}/.bashrc

PowerShell example:

write "`n# odahuflowctl completion" (odahuflowctl completion) >> $PROFILE.CurrentUserAllHosts
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Model Format
The Odahu Model Artifact Format (OMAF) describes a format to package, store,
and transport ML models.
Models can be built in different languages and use different platform libraries. For
example: {Python, Scala, R, …} using {scikit-learn, tensorflow, keras, …}.
An OMAF Artifact is stored as a file-system folder packed into a ZIP file using the
Deflate ZIP compression algorithm.
The Artifact contains:

• odahuflow.model.yaml a YAML file in the root folder. This file contains
meta-information about the type of binary model and other model related
information (e.g. language, import endpoints, dependencies).

• Additional folders and files, depending upon meta-information declared in
odahuflow.model.yaml.

odahuflow.model.yaml
File structure:

• binaries - Language and dependencies that should be used to load model
binaries

• binaries.type - Required Odahu Model Environments. See section Odahu Model
Environments.

• binaries.dependencies - Dependency management system, compatible with
the selected Odahu Model Environment

• binaries.<additional> - Model Environment and dependency management
system values, for example ‘a path to the requirements file’

• model - Location of the model artifact Model artifact format depends on Odahu
Model Environment.

• model.name - name of the model, [a-Z0-9-]+
• model.version - version of model. Format is
<Apache Version>-<Additional suffix>, where Additional suffix is a
[a-Z0-9-.]+ string.

• model.workDir - working directory to start model from.
• model.entrypoint - name of model artifact (e.g. Python module or Java JAR file).
• odahuflowVersion - OMAF version
• toolchain - toolchain used for training and preparing the Artifact
• toolchain.name - name of the toolchain
• toolchain.version - version of used toolchain.
• toolchain.<additional> - additional fields, related to used toolchain (e.g. used

submodule of toolchain).
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Examples:
Example with GPPI using conda for dependency management, mlflow toolchain.

binaries:
  type: python
  dependencies: conda
  conda_path: mlflow/model/mlflow_env.yml
model:
  name: wine-quality
  version: 1.0.0-12333122
  workDir: mlflow/model
  entrypoint: entrypoint
odahuflowVersion: '1.0'
toolchain:
  name: mlflow
  version: 1.0.0

Odahu Model Environments
Odahu supports these model environments:

• General Python Prediction Interface (GPPI). Can import a trained model as a
python module and use a predefined function for prediction. Value for
binaries.type should be python.

• General Java Prediction Interface (GJPI). Can import a trained model as a Java
Library and use a predefined interfaces for prediction. Value for binaries.type
should be java.

Odahu’s General Python Prediction Interface (GPPI)

General Information

Description
This interface is an importable Python module with a declared interface (functions
with arguments and return types). Toolchains that save models in this format must
provide an entrypoint with this interface or they may provide a wrapper around
their interface for this interface.

Required Environment variables

• MODEL_LOCATION – path to model’s file, relative to working directory.

Odahu Model Environments
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Interface declaration
Interface functions:

Odahu Model Environments
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Connections
Odahu needs to know how to connect to a bucket, git repository, and so on. This kind
of information is handled by Connection API.

General connection structure
All types of connections have the same general structure. But different connections
require a different set of fields. You can find the examples of specific type of
connection in the id of the Connection types section. Below you can find the
description of all fields:

Connection API

kind: Connection
# Unique value among all connections
# Id must:
#  * contain at most 63 characters
#  * contain only lowercase alphanumeric characters or ‘-’
#  * start with an alphanumeric character
#  * end with an alphanumeric character
id: "id-12345"
spec:
    # Optionally description of a connection
    description: "Some description"
    # Optionally link to the web resource. For example, git repo or a gcp bucket
    webUILink: https://test.org/123
    # URI. It is a required value.
    uri: s3://some-bucket/path/file
    # Type of a connection. Available values: s3, gcs, azureblob, git, docker, ecr.
    type: s3
    # Username
    username: admin
    # Password, must be base64-encoded
    password: admin
    # Service account role
    role: some-role
    # AWS region or GCP project
    region: some region
    # VCS reference
    reference: develop
    # Key ID, must be base64-encoded
    keyID: "1234567890"
    # SSH or service account secret, must be base64-encoded
    keySecret: b2RhaHUK
    # SSH public key, must be base64-encoded
    publicKey: b2RhaHUK
    # Defines if connection is vital. Vital connections cannot be deleted
    vital: false

Connection management
Connections can be managed using the following ways.

Swagger UI
Swagger UI is available at http://api-service/swagger/index.html URL.

Connections
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Odahu-flow CLI
Odahuflowctl supports the connection API. You must be login if you want to get
access to the API.

• Getting all connections in json format:

odahuflowctl conn get --format json

• Getting the reference of the connection:

odahuflowctl conn get --id odahu-flow-examples -o 'jsonpath=[*].spec.reference'

• Creating of a connection from conn.yaml file:

odahuflowctl conn create -f conn.yaml

• All connection commands and documentation:

odahuflowctl conn --help

JupyterLab
Odahu-flow provides the JupyterLab extension for interacting with Connection API.

Connection types
For now, Odahu-flow supports the following connections types:

• S3
• Google Cloud Storage
• Azure Blob storage
• GIT
• Docker
• Amazon Elastic Container Registry

S3
An S3 connection allows interactions with s3 API. This type of connection is used as
storage of:

Connection types
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• model trained artifacts.
• input data for ML models.

Note

You can use any S3 compatible API, for example minio or Ceph.

Before usage, make sure that:

• You have created an AWS S3 bucket. Examples of Creating a Bucket.
• You have created an IAM user that has access to the AWS S3 bucket. Creating

an IAM User in Your AWS Account.
• You have created the IAM keys for the user. Managing Access Keys for IAM

Users.

Note

At that moment, Odahu-flow only supports authorization though IAM User. We will
support AWS service role and authorization using temporary credentials in the
near future.

The following fields of connection API are required:

• spec.type - It must be equal s3.
• spec.keyID - base64-encoded access key ID (for example,
AKIAIOSFODNN7EXAMPLE).

• spec.keySecret - base64-encoded secret access key (for example,
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY).

• spec.uri - S3 compatible URI, for example s3://<bucket-name>/dir1/dir2/
• spec.region - AWS Region, where a bucket was created.

Example of Connection S3:

kind: Connection
id: "training-data"
spec:
    type: s3
    uri: s3://raw-data/model/input
    # keyID before base64-encoding: AKIAIOSFODNN7EXAMPLE
    keyID: "QUtJQUlPU0ZPRE5ON0VYQU1QTEU="
    # keySecret before base64 encoding: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
    keySecret: "d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQ=="
    description: "Training data for a model"
    region: eu-central-1
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Google Cloud Storage
Google Cloud Storage allows storing and accessing data on Google Cloud Platform
infrastructure. This type of connection is used as storage of:

• model trained artifacts.
• input data for ML models.

Before usage, make sure that:

• You have created an GCS bucket. Creating storage buckets.
• You have created an service account. Creating and managing service

accounts.
• You have assigned roles/storage.objectAdmin role on the service account

for the GCS bucket. Using Cloud IAM permissions.
• You have created the IAM keys for the service account. Creating and

managing service account keys.

Note

Workload Identity is the recommended way to access Google Cloud services from
within GKE due to its improved security properties and manageability. We will
support the Workload Identity in the near future.

The following fields of connection API are required:

• spec.type - It must be equal gcs.
• spec.keySecret - base64-encoded service account key in json format.
• spec.uri - GCS compatible URI, for example gcs://<bucket-name>/dir1/dir2/
• spec.region - GCP Region, where a bucket was created.

Example of Connection GCS:kind: Connection
id: "training-data"
spec:
    type: gcs
    uri: gsc://raw-data/model/input
    keySecret: 
    description: "Training data for a model"
    region: us-central2

Original service account JSON key, that is used in the example above, before
base64-encoding:

{
    "type": "service_account",
    "project_id": "project_id",
    "private_key_id": "private_key_id",
    "private_key": "-----BEGIN PRIVATE KEY-----\nprivate_key\n-----END PRIVATE KEY-----\n",
    "client_email": "test@project_id.iam.gserviceaccount.com",
    "client_id": "123455678",
    "auth_uri": "https://accounts.google.com/o/oauth2/auth",
    "token_uri": "https://oauth2.googleapis.com/token",
    "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
    "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test@project_id.iam.gserviceaccount.com"
}
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Azure Blob storage
Odahu-flow uses the Blob storage in Azure to store:

• model trained artifacts.
• input data for ML models.

Before usage, make sure that:

• You have created a storage account . Create a storage account.
• You have created a storage container in the storage account . Create a

container.
• You have created a SAS token. Create an account SAS.

The following fields of connection API are required:

• spec.type - It must be equal azureblob.
• spec.keySecret - Odahu-flow uses the shared access signatures to authorize

in Azure. The key has the following format:
“<primary_blob_endpoint>/<sas_token>” and must be base64-encoded.

• spec.uri - Azure storage compatible URI, for example
<bucket-name>/dir1/dir2/

Example of Connection Blob Storage:
kind: Connection
id: "training-data"
spec:
    type: azureblob
    uri: raw-data/model/input
    # keySecret before base64-encoding: https://myaccount.blob.core.windows.net/?restype=service&comp=properties&sv=2019-02-02&ss=bf&srt=s&st=2019-08-01T22%3A18%3A26Z&se=2019-08-10T02%3A23%3A26Z&sr=b&sp=rw&sip=168.1.5.60-168.1.5.70&spr=https&sig=F%6GRVAZ5Cdj2Pw4tgU7IlSTkWgn7bUkkAg8P6HESXwmf%4B
    keySecret: aHR0cHM6Ly9teWFjY291bnQuYmxvYi5jb3JlLndpbmRvd3MubmV0Lz9yZXN0eXBlPXNlcnZpY2UmY29tcD1wcm9wZXJ0aWVzJnN2PTIwMTktMDItMDImc3M9YmYmc3J0PXMmc3Q9MjAxOS0wOC0wMVQyMiUzQTE4JTNBMjZaJnNlPTIwMTktMDgtMTBUMDIlM0EyMyUzQTI2WiZzcj1iJnNwPXJ3JnNpcD0xNjguMS41LjYwLTE2OC4xLjUuNzAmc3ByPWh0dHBzJnNpZz1GJTZHUlZBWjVDZGoyUHc0dGdVN0lsU1RrV2duN2JVa2tBZzhQNkhFU1h3bWYlNEI=
    description: "Training data for a model"

GIT
Odahu-flow uses the GIT type connection to download a ML source code from a git
repository.
The following fields of connection API are required:

• spec.type - It must be equal git.
• spec.keySecret - a base64 encoded SSH private key.
• spec.uri - GIT SSH URL, for example

git@github.com:odahu/odahu-examples.git
spec.reference must be provided either in a connection OR in a model training
object (General training structure).
Example of command to encode ssh key:

cat ~/.ssh/id_rsa | base64 -w0
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Note

Odahu-flow only supports authorization through SSH.

Warning

We recommend using the read-only deploy keys: Github docs or Gitlab docs.

Example of GIT Connection:

kind: Connection
id: "ml-repository"
spec:
    type: git
    uri: git@github.com:odahu/odahu-examples.git
    keySecret: ClNVUEVSIFNFQ1JFVAoK
    reference: master
    description: "Git repository with the Odahu-Flow examples"
    webUILink: https://github.com/odahu/odahu-examples

Docker
This type of connection is used for pulling and pushing of the Odahu packager result
Docker images to a Docker registry. We have been testing the following Docker
repositories:

• Docker Hub
• Nexus
• Google Container Registry
• Azure Container Registry

Warning

Every docker registry has its authorization specificity. But you must be able to
authorize by a username and password. Read the documentation.

Before usage, make sure that:

• You have a username and password.
The following fields of connection API are required:

• spec.type - It must be equal docker.
• spec.username - docker registry username.
• spec.password - base64-encoded docker registry password.
• spec.uri - docker registry host.

Connection types

75

https://github.blog/2015-06-16-read-only-deploy-keys/
https://docs.gitlab.com/ee/ssh/#per-repository-deploy-keys
https://docs.docker.com/docker-hub/
https://help.sonatype.com/repomanager3/formats/docker-registry
https://cloud.google.com/container-registry/docs/
https://docs.microsoft.com/en-in/azure/container-registry/container-registry-intro


Warning

Connection URI must not contain a URI schema.

Example of GCR Docker connectionkind: Connection
id: "docker-registry"
spec:
    type: docker
    uri: gcr.io/project/odahuflow
    username: "_json"
    password: 

Original service account JSON key, that is used in the example above, before
base64-encoding:

{
    "type": "service_account",
    "project_id": "project_id",
    "private_key_id": "private_key_id",
    "private_key": "-----BEGIN PRIVATE KEY-----\nprivate_key\n-----END PRIVATE KEY-----\n",
    "client_email": "test@project_id.iam.gserviceaccount.com",
    "client_id": "123455678",
    "auth_uri": "https://accounts.google.com/o/oauth2/auth",
    "token_uri": "https://oauth2.googleapis.com/token",
    "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
    "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test@project_id.iam.gserviceaccount.com"
}

Example of Docker Hub

kind: Connection
id: "docker-registry"
spec:
    type: docker
    uri: docker.io/odahu/
    username: username
    # password before encoding: mypassword
    password: bXlwYXNzd29yZA===

Amazon Elastic Container Registry
Amazon Elastic Container Registry is a managed AWS Docker registry. This type of
connection is used for pulling and pushing of the Odahu packager result Docker
images.

Note

The Amazon Docker registry does not support a long-lived credential and requires
explicitly to create a repository for every image. These are the reasons why we
create a dedicated type of connection for the ECR.

Before usage, make sure that:

• You have created an ECR repository. Creating an ECR Repository.
• You have created an IAM user that has access to the ECR repository. Creating

an IAM User in Your AWS Account.
• You have created the IAM keys for the user. Managing Access Keys for IAM

Users.
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The following fields of connection API are required:

• spec.type - It must be equal ecr.
• spec.keyID - base64-encoded access key ID (for example,
AKIAIOSFODNN7EXAMPLE).

• spec.keySecret - base64-encoded secret access key (for example,
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY).

• spec.uri - The url must have the following format,
aws_account_id.dkr.ecr.`region`.amazonaws.com/some-prefix.

• spec.region - AWS Region, where a docker registry was created.
Example of Connection ECR:

kind: Connection
id: "docker-registry"
spec:
    type: ecr
    uri: 5555555555.dkr.ecr.eu-central-1.amazonaws.com/odahuflow
    # keyID before base64-encoding: "AKIAIOSFODNN7EXAMPLE"
    keyID: QUtJQUlPU0ZPRE5ON0VYQU1QTEU=
    # keySecret before base64-encoding: "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
    keySecret: d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQ==
    description: "Packager registry"
    region: eu-central-1
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Model Trainings

ODAHU model training component helps to automate ML model training jobs
execution in K8S. The primary goal of model training component is to create a
Trained Model Binary for a Packager. The API is pluggable and can be extended
for different ML frameworks.
You can find the list of out-of-the-box trainers below:

• MLFlow toolchain
• MLFlow Project toolchain

General training structure
Training API

kind: ModelTraining
# Some unique value among all trainings. if not, the training with the same name will be overwritten.
# Id must:
#  * contain at most 63 characters
#  * contain only lowercase alphanumeric characters or ‘-’
#  * start with an alphanumeric character
#  * end with an alphanumeric character
id: wine-12345
spec:
  model:
    # Human-readable model name
    name: wine
    # Human-readable model version
    version: 3.0
    # Optionally, you can specify template for output artifact
    # The default value is {{ .Name }}-{{ .Version }}-{{ .RandomUUID }}.zip
    # where:
    #   Name - spec.model.name
    #   Version - spec.model.version
    #   RandomUUID - a random UUID v4, for example be17d12d-df43-4588-99e7-56a0db3cad77
    artifactNameTemplate: {{ .Name }}-{{ .Version }}-{{ .RandomUUID }}.zip
  # The toolchain parameter is a point of extension for different ML frameworks.
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  # For now, we only support the Mlfow toolchain
  toolchain: mlflow
  # Mlflow MLProject file contains the list of entrypoints. You must choose one of those.
  entrypoint: main
  # Working directory inside a training (docker) container, which GIT repository copied in.
  # Optional. The default directory is "./".
  workDir: work/dir
  # The training data for a ML script. You can find full description there: https://docs.odahu.epam.com/ref_trainings.html#training-data
  data:
      # You can specify a connection name
    - connection: wine
      # Path to a file or a dir where data will copy from a bucket; relative to your Git repository root derictory.
      localPath: mlflow/wine-quality/
      # Path to the dir or file in a bucket
      # Optional. If it is missing then the path from connection will be used.
      remotePath: training-data/
  # You can specify the map of hyperparameters
  hyperParameters:
    key: value
    var2: test
  # Compute resources for the training job.
  resources:
    limits:
      cpu: 1
      memory: 1Gi
    requests:
      cpu: 1
      memory: 1Gi
  # Custom environment variables that should be set before entrypoint invocation.
  envs:
      # The name of variable
    - name: TEST_ENV_KEY
      # The value of variable
      value: TEST_ENV_VALUE
  # A Docker image where the training will be launched.
  # By default, the image from a toolchain is used.
  image: python:3.8
  # A section defining training source code
  algorithmSource:
    # Use vcs if source code located in a repository and objectStorage if in a storage. Should not use both
    vcs:
      # A connection which describes credentials to a GIT repository or to a bucket if using objectStorage
      connection: <git-connection>
      # Git reference (branch or tag)
      # This must be specified here OR in Git connection itself
      # In case of using objectStorage, specify path: <remote path> instead of reference
      reference: master
  # You can set a connection that points where the Trained Model Binary will be stored.
  # Optional. Default value is taken from the ODAHU cluster configuration.
  outputConnection: custom-connection
  # Node selector that exactly matches a node pool from ODAHU config
  # This is optional; when omitted, ODAHU uses any of available training node pools
  # Read more about node selector: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
  nodeSelector:
    label: value
status:
  # One of the following states: scheduling, running, succeeded, failed, unknown
  state: running
  # List of training results
  artifacts:
      # Mlflow run ID
    - runId: 12345678
      # Trained artifact name
      artifactName: wine-10.zip
      # VCS commit ID
      commitID: d3d6e8ed776ed37fd2efd7a1b8d5fabdd7e3eea5

Training data
Odahu-flow allows downloading data from various sources to the local file system of
a training job. Data source supports the following types of Odahu-flow connections:

• S3
• Google Cloud Storage
• Azure Blob storage

Let’s consider the following example of downloading training data from Google Cloud
Storage.
Prerequisites:

Training data
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• The training data set is located in the wine-training-data bucket by
wine/11-11-2011/ directory.

• The ML script expects that the data will be located in the training (docker)
container by data/ directory relative to the root git directory.

First of all, we should create an Odahu-flow GCS connection.
Training Data GCS:kind: ModelTraining

id: "wine-training-data-conn"
spec:
    type: gcs
    uri: gsc://wine-training-data/
    keySecret: '{"type": "service_account", "project_id": "project_id", "private_key_id": "private_key_id", "private_key": "-----BEGIN PRIVATE KEY-----\nprivate_key\n-----END PRIVATE KEY-----\n", "client_email": "test@project_id.iam.gserviceaccount.com", "client_id": "123455678", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test@project_id.iam.gserviceaccount.com"}'
    description: "Training data for a model"
    region: us-central2

Finally, we provide a data section of Model Training.
Example of Connection GCS:

spec:
  data:
    - connection: wine-training-data-conn
      localPath: data/
      remotePath: wine/11-11-2011/

GPU
Odahu-flow supports model training on GPU nodes.
You can find more about GPU deployment configuration in the installation guide.
In order to provision a training container in the GPU node pool, you must specify the
GPU resource in the model training manifest.

Training on GPU

kind: ModelTraining
id: gpu-model
spec:
  resources:
    limits:
      cpu: 1
      memory: 1Gi
      gpu: 1
    requests:
      cpu: 1
      memory: 1Gi

NVIDIA libraries will be mount by ODAHU to the training container. But if you want to
use a CUDA library, you should install it manually.
For example, you can add the following dependencies to a conda file: cudatoolkit-dev
and cudatoolkit.

Model Dependencies Cache
ODAHU Flow downloads your dependencies on every model training launch. You can
experience the following troubles with this approach:
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• downloading and installation of some dependencies can take a long time
• network errors during downloading dependencies

To overcome these and other problems, ODAHU Flow provides a way to specify a
prebuilt training Docker image with your dependencies.

Note

If you have different versions of a library in your model сonda file and cache
container, then the model dependency has a priority. It will be downloaded during
model training.

First of all, you have to describe the Dockerfile:

• Inherit from a release version of odahu-flow-mlflow-toolchain
• Optionally, add install dependencies
• Add a model conda file
• Update the odahu_model conda environment.

Example of Dockerfile:

FROM odahu/odahu-flow-mlflow-toolchain:1.1.0-rc11

# Optionally
# apt-get install -y wget

ADD conda.yaml ./
RUN conda env update -n ${ODAHU_CONDA_ENV_NAME} -f conda.yaml

Build the docker image:

docker build -t training-model-cache:1.0.0 .

Push the docker image to a registry:

docker push training-model-cache:1.0.0

Specify the image in a model training:
Training example

kind: ModelTraining
id: model-12345
spec:
  image: training-model-cache:1.0.0
  ...
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Trainings management
Trainings can be managed using the following ways.

Swagger UI
ModelTraining and ToolchainIntegration are available on the Swagger UI at
http://api-service/swagger/index.html URL.

Odahu-flow CLI
Odahuflowctl supports the Training API. You must be logged in if you want to get
access to the API.
Getting all trainings in json format:

odahuflowctl train get --format json

Getting the model name of the trainings:

odahuflowctl train get --id tensorflow-cli -o 'jsonpath=[*].spec.model.name'

• Creating a training from train.yaml file:

odahuflowctl train create -f train.yaml

• Reruning a training from train.yaml file:

odahuflowctl train edit -f train.yaml

• All training commands and documentation:

odahuflowctl train --help

We also have local training:

odahuflowctl local train --help

and can run trainings locally:

odahuflowctl local train run --id [Model training ID] -d [Path to Odahu manifest files]

more information you can find at Local Quickstart
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JupyterLab
Odahu-flow provides the JupyterLab extension for interacting with Training API.

MLFlow toolchain
MLflow is library-agnostic. You can use it with any machine learning library, and in
any programming language, since all functions are accessible through a REST API
and CLI.

Installation
The most straightforward way to install the MLFlow trainer on an Odahu Cluster is to
deploy the odahu-flow-mlflow helm chart. The helm chart registers the trainer in the
API Odahu and deploys an MLflow Tracking Server. By default, the deployed MLflow
Tracking Server is available at https://cluster-url/mlflow address.

# Add the odahu-flow helm repository
helm repo add odahu-flow 'https://raw.githubusercontent.com/odahu/odahu-helm/master/'
helm repo update
# Fill in the values for the chart or leave the default values
helm inspect values odahu-flow/odahu-flow-mlflow --version 1.0.0 > values.yaml
vim values.yaml
# Deploy the helm chart
helm install odahu-flow/odahu-flow-mlflow --name odahu-flow-mlflow --namespace odahu-flow --debug -f values.yaml --atomic --wait --timeout 120

Warning

Odahu-flow must be deployed before the mlflow trainer.

MLProject file
Let’s look at how the MLProject file is related to Model Training API.

name: My Project

entry_points:
  main:
    parameters:
      data_file: path
      regularization: {type: float, default: 0.1}
    command: "python train.py -r {regularization} {data_file}"
  test:
    parameters:
      data_file: path
    command: "python validate.py {data_file}"

Model Training API can contain only one entry point. You have to add all
hyperparameters, which do not have a default value, to a Model Training. Next, you
can find the Model Trainings for the MLProject file.

MLFlow toolchain
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spec:
  entrypoint: main
  hyperParameters:
    data_file: test/123.txt
    regularization: 0.2

spec:
  entrypoint: main
  hyperParameters:
    data_file: test/456.txt

spec:
  entrypoint: test
  hyperParameters:
    data_file: test/123.txt

MLFlow protocol
Odahu-flow requires that a model is logged through mlflow API.

Example of sklearn model logging:

mlflow.sklearn.log_model(lr, "model")

Optionally, you can provide input and output samples for Odahu-flow. It allows
determining input and output types for Odahu-flow packagers. These names must be
head_input.pkl and head_output.pkl, respectively.

Example of input and output samples logging:

train_x.head().to_pickle('head_input.pkl')
mlflow.log_artifact('head_input.pkl', 'model')
train_y.head().to_pickle('head_output.pkl')
mlflow.log_artifact('head_output.pkl', 'model')

MLFlow Project toolchain
MLFlow Project toolchain is a lightweight version of MLFlow toolchain.
The main difference is that MLFlow Project toolchain does not require user to store
models using MLFlow Tracking API and therefore does not require models stored in
MLFlow format as a resulted artifact.
Instead, MLFlow Project toolchain relies only on MLFlow Project functionality to run
training script and manage dependencies. User can store result artifacts in any
format as they wish.

MLFlow Project toolchain
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Installation
Installation of MLFlow Project toolchain is identical to MLFlow installation

MLProject file
MLFlow Project toolchain runs training script using MLProject specification. Please
refer to previous section or official MLFlow documentation to learn more about
MLProject file.

Storing training artifacts
You can store any artifacts during script execution in a special directory. To get a
path to output directory read value of $ODAHUFLOW_OUTPUT_DIR environment
variable.

Example

1 output_dir = os.environ.get("ODAHUFLOW_OUTPUT_DIR")
2 
3 train_x.head().to_pickle(os.path.join(output_dir, 'head_input.pkl'))

Additionally, if $STATIC_ARTIFACTS_DIR variable is specified with a path to directory,
all the contents is copied to final artifact. Path must be relative to working directory.
You can use this feature if you have some file(s) that are required by further steps
and can be defined statically before script execution. For example, some python
wrapper scripts to deploy a model into a specific ML Server in the future.
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Model Packagers

ODAHU packaging component helps to wrap a Trained Model Binary artifact into a
inference service, batch job or command line tool. You can find the list of
out-of-the-box packagers below:

• Docker REST
• Docker CLI

Installation
A packager installation is the creation of a new PackagingIntegration entity in the
API service. The most straightforward way is to deploy the odahu-flow-packagers
helm chart.

# Add the odahu-flow helm repository
helm repo add odahu-flow 'https://raw.githubusercontent.com/odahu/odahu-helm/master/'
helm repo update
# Fill in the values for the chart or leave the default values
helm inspect values odahu-flow/odahu-flow-packagers --version 1.0.0-rc35 > values.yaml
vim values.yaml
# Deploy the helm chart
helm install odahu-flow/odahu-flow-packagers --name odahu-flow-packagers --namespace odahu-flow --debug -f values.yaml --atomic --wait --timeout 120

Warning

Odahu-flow must be deployed before the packagers installation.
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General packager structure
All packagers have the same structure. But different packagers provide a different
set of arguments and targets. You can find the description of all fields below:

Packager API

kind: ModelPackaging
# Unique value among all packagers
# Id must:
#  * contain at most 63 characters
#  * contain only lowercase alphanumeric characters or ‘-’
#  * start with an alphanumeric character
#  * end with an alphanumeric character
id: "id-12345"
spec:
  # Type of a packager. Available values: docker-rest, docker-cli.
  integrationName: docker-rest
  # Training output artifact name
  artifactName: wine-model-123456789.zip
  # Compute resources
  resources:
    limits:
      cpu: 1
      memory: 1Gi
    requests:
      cpu: 1
      memory: 1Gi
  # List of arguments. Depends on a Model Packaging integration.
  # You can find specific values in the sections below.
  # This parameter is used for customizing a packaging process.
  arguments: {}
  # List of targets. Depends on a Model Packaging integration.
  # You can find specific values in the sections below.
  # A packager can interact with a Docker registry, PyPi repository, and so on.
  # You should provide a list of connections for a packager to get access to them.
  targets: []
  # You can set connection which points to some bucket where the Trained Model Binary is stored
  # then packager will extract your binary from this connection.
  # Optional. Default value is taken from the ODAHU cluster configuration.
  outputConnection: custom-connection
  # Node selector that exactly matches a node pool from ODAHU config
  # This is optional; when omitted, ODAHU uses any of available packaging node pools
  # Read more about node selector: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
  nodeSelector:
    label: value
# Every packager saves its results into status field.
# Example of fields: docker image or python packager name.
status:
  results:
    - name: some_param
      value: some_value

Note

You can find an artifactName in the status.artifactName field of a model training
entity.

Packagers management
Packagers can be managed using the following ways.
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Swagger UI
ModelPackaging and PackagingIntegration are available on the Swagger UI at
http://api-service/swagger/index.html URL.

ODAHU CLI
Odahuflowctl supports the Packagers API. You must be logged in if you want to get
access to the API.
Getting all packaging in json format:

odahuflowctl pack get --format json

Getting the arguments of the packagers:

odahuflowctl pack get --id tensorflow-cli -o 'jsonpath=[*].spec.arguments'

• Creating of a packager from pack.yaml file:

odahuflowctl pack create -f pack.yaml

• All commands and documentation for packager at Odahu cluster:

odahuflowctl pack --help

We also have local packager:

odahuflowctl local pack --help

and can run packaging locally:

odahuflowctl local pack run --id [Model packaging ID] -d [Path to an Odahu manifest file]

more information you can find at Local Quickstart

JupyterLab
Odahu-flow provides the JupyterLab extension for interacting with Packagers API.

Model Docker Dependencies Cache
ODAHU Flow downloads your dependencies on every docker model packaging
launch. You can experience the following troubles with this approach:

Model Docker Dependencies Cache
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• downloading and installation of some dependencies can take a long time
• network errors during downloading dependencies

To overcome these and other problems, ODAHU Flow provides a way to specify a
prebuilt packaging Docker image with your dependencies.

Note

If you have different versions of a library in your model сonda file and cache
container, then the model dependency has a priority. It will be downloaded during
model packaging.

First of all, you have to describe the Dockerfile:

• Inherit from a release version of odahu-flow-docker-packager-base
• Optionally, add install dependencies
• Add a model conda file
• Update the odahu_model conda environment.

Example of Dockerfile:

FROM odahu/odahu-flow-docker-packager-base:1.1.0-rc11

# Optionally
# RUN pip install gunicorn[gevent]

ADD conda.yaml ./
RUN conda env update -n ${ODAHU_CONDA_ENV_NAME} -f conda.yaml

Build the docker image:

docker build -t packaging-model-cache:1.0.0 .

Push the docker image to a registry:

docker push packaging-model-cache:1.0.0

Specify the image in a model packaging:
Packaging example

kind: ModelPackaging
id: model-12345
spec:
  arguments:
    dockerfileBaseImage: packaging-model-cache:1.0.0
  ...

Model Docker Dependencies Cache

89



Docker REST
The Docker REST packager wraps an ML model into the REST service inside a Docker
image. The resulting service can be used for point prediction through HTTP.
The packager provides the following list of targets:

Target
Name

Connectio
n Types

Req
uire

d Description
docker-p
ush

docker,
ecr

Tru
e

The packager will use the connection for pushing a
Docker image result

docker-p
ull

docker,
ecr

Fal
se

The packager will use the connection for pulling a
custom base Docker image

The packager provides the following list of arguments:

Argume
nt Name Type Default

Re
qui
re
d Description

imageN
ame

string {{
Name
}}-{{
Version
}}:{{ R
andom
UUID
}}

Fal
se

This option provides a way to specify the
Docker image name. You can hardcode the full
name or specify a template. Available template
values: Name (Model Name), Version (Model
Version), RandomUUID. Examples:
myservice:123, {{ Name }}:{{ Version }}

port integer 5000 Fal
se

Port to bind

timeout integer 60 Fal
se

Serving timeout in seconds.

workers integer 1 Fal
se

Count of serving workers

threads integer 4 Fal
se

Count of serving threads

host string 0.0.0.0 Fal
se

Host to bind

dockerfi
leBaseI
mage

string python:
3.6

Fal
se

Base image for Dockerfile

The packager provides the following list of result fields:
Name Type Description

image string The full name of a built Docker image

Let’s build a couple of examples of Docker REST packager. The packager requires
docker or ecr connection types. The following example assumes that you have
created a connection with test-docker-registry id and gcr.io/project/odahuflow URI.

Docker REST
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Minimal Example of Docker REST packager

kind: ModelPackaging
id: "docker-rest-packager-example"
spec:
    integrationName: docker-rest
    artifactName: wine-model-123456789.zip
    targets:
        - connectionName: test-docker-registry
          name: docker-push

Then a result of the packager will be something like this:
“gcr.io/project/odahuflow/wine-0-1:ec1bf1cd-216d-4f0a-a62f-bf084c79c58c”.
Now, let’s try to change the docker image name and number of workers.

Docker REST packager with custom arguments

kind: ModelPackaging
id: "docker-rest-packager-example"
spec:
    integrationName: docker-rest
    artifactName: wine-model-123456789.zip
    targets:
        - connectionName: test-docker-registry
          name: docker-push
    arguments:
        imageName: "wine-test:prefix-{{ RandomUUID }}"
        workers: 4

odahuflowctl pack get --id "docker-rest-packager-example" -o 'jsonpath=$[0].status.results[0].value'

Then a result of the packager will be something like this:
“gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c”.
You can run the image locally using the following command:

docker run -it --rm --net host gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c

The model server provides two urls:

• GET /api/model/info - provides a swagger documentation for a model
• POST /api/model/invoke - executes a prediction

curl http://localhost:5000/api/model/info
curl -X POST -d '{"columns": ["features","features","features"], "data": [[1, 2, 3], [4, 5, 6]]}' -H "Content-Type: application/json" http://localhost:5000/api/model/invoke

Docker REST predict API

{
  "columns": [
    "features",
    "features",
    "features"
  ],
  "data": [
    [
      1,
      2,
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      3,
    ],
    [
      4,
      5,
      6,
    ]
  ]
}

Docker REST prediction result

{
  "prediction": [
    [
      0.09405578672885895
    ],
    [
      0.01238546592343845
    ]
  ],
  "columns": [
    "predictions"
  ]
}

Docker CLI
The Docker CLI packager wraps an ML model into the CLI inside a Docker image. The
resulting service can be used for batch prediction.
The packager provides the following list of targets:

Target
Name

Connectio
n Types

Req
uire

d Description
docker-p
ush

docker,
ecr

Tru
e

The packager will use the connection for pushing a
Docker image result

docker-p
ull

docker,
ecr

Fal
se

The packager will use the connection for pulling a
custom base Docker image

The packager provides the following list of arguments:

Argume
nt Name Type Default

Re
qui
re
d Description

imageN
ame

string {{
Name
}}-{{
Version
}}:{{ R
andom
UUID
}}

Fal
se

This option provides a way to specify the
Docker image name. You can hardcode the full
name or specify a template. Available template
values: Name (Model Name), Version (Model
Version), RandomUUID. Examples:
myservice:123, {{ Name }}:{{ Version }}
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dockerfi
leBaseI
mage

string python:
3.6

Fal
se

Base image for Dockerfile

The packager provides the following list of result fields:
Name Type Description

image string The full name of a built Docker image

Let’s build a couple of examples of Docker CLI packager. The packager requires
docker or ecr connection types. The following example assumes that you have
created a connection with test-docker-registry id and gcr.io/project/odahuflow URI.

Minimal Example of Docker CLI packager

kind: ModelPackaging
id: "docker-cli-packager-example"
spec:
    integrationName: docker-cli
    artifactName: wine-model-123456789.zip
    targets:
        - connectionName: test-docker-registry
          name: docker-push

Then a result of the packager will be something like this:
“gcr.io/project/odahuflow/wine-0-1:ec1bf1cd-216d-4f0a-a62f-bf084c79c58c”.
Now, let’s try to change the docker image name and the base image.

Docker CLI packager with custom arguments

kind: ModelPackaging
id: "docker-cli-packager-example"
spec:
    integrationName: docker-cli
    artifactName: wine-model-123456789.zip
    targets:
        - connectionName: test-docker-registry
          name: docker-push
    arguments:
        imageName: "wine-test:prefix-{{ RandomUUID }}"
        dockerfileBaseImage: "python:3.7"

odahuflowctl pack get --id "docker-cli-packager-example" -o 'jsonpath=$[0].status.results[0].value'

Then a result of the packager will be something like this:
“gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c”.
You can run the image locally using the following command:

docker run -it --rm --net host gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c --help

The model CLI provides two commands:

• predict - Make predictions using GPPI model
• info - Show model input/output data schema

Docker CLI
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Docker CLI info command

docker run -it --rm --net host gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c info

Docker CLI info command output

Input schema:
{
    "columns": {
        "example": [
            "features",
            "features",
            "features",
        ],
        "items": {
            "type": "string"
        },
        "type": "array"
    },
    "data": {
        "items": {
            "items": {
                "type": "number"
            },
            "type": "array"
        },
        "type": "array",
        "example": [
            [
                0,
                0,
                0,
            ]
        ]
    }
}
Output schema:
{
    "prediction": {
        "example": [
            [
                0
            ]
        ],
        "items": {
            "type": "number"
        },
        "type": "array"
    },
    "columns": {
        "example": [
            "predictions"
        ],
        "items": {
            "type": "string"
        },
        "type": "array"
    }
}

Let’s make a batch prediction.
Create a predict file

mkdir volume
cat > volume/predicts.json <<EOL
{
  "columns": [
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    "features",
    "features",
    "features",
  ],
  "data": [
    [
      1,
      2,
      3
    ],
    [
      4,
      5,
      6
    ]
  ]
}
EOL
docker run -it --rm --net -v volume:/volume host gcr.io/project/odahuflow/wine-test:prefix-ec1bf1cd-216d-4f0a-a62f-bf084c79c58c predict /volume/predicts.json /volume

Result of prediction

cat volumes/result.json
{
  "prediction": [
    [
      0.09405578672885895
    ],
    [
      0.01238546592343845
    ]
  ],
  "columns": [
    "predictions"
  ]
}

Nvidia Triton Packager
Triton Packager wraps model with Triton Inference Server. The server supports
multiple ML frameworks. Depending on the framework the packager expects
different input.

Required files:

• model file/directory with fixed naming. Refer to Triton Backend Docs to find more
specific information on particular Triton backend.

• TensorRT: model.plan
• TensorFlow SavedModel: model.savedmodel/...
• TensorFlow Grafdef: model.graphdef
• ONNX: model.onnx file or directory
• TorchScript: model.pt
• Caffe 2 Netdef: model.netdef + init_model.netdef

• config.pbtxt, Triton config file (Triton Model Configuration Docs). Optional for the
following backends:

• TensorRT

Nvidia Triton Packager
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• TF SavedModel
• ONNX

Optional files:

• odahuflow.model.yaml in the following format. When omitted defaults to model model of
version 1;

name: model
version: 1

• conda.yaml for Python backend. If conda-file detected new conda env is created and
used for run model.

• Any other arbitrary files will be copied and put next to model file.

Targets, Arguments and Results
Triton Packager Targets:

Target
Name

Connectio
n Types

Req
uire

d Description
docker-p
ush

docker,
ecr

Tru
e

The packager will use the connection for pushing a
Docker image result

Triton Packager Arguments:

Argume
nt Name Type Default

Re
qui
re
d Description

imageN
ame

string {{
Name
}}-{{
Version
}}:{{ R
andom
UUID
}}

Fal
se

This option provides a way to specify the
Docker image name. You can hardcode the full
name or specify a template. Available template
values: Name (Model Name), Version (Model
Version), RandomUUID. Examples:
myservice:123, {{ Name }}:{{ Version }}

triton_b
ase_im
age_tag

string 20.11-p
y3

Fal
se

Triton Base image tag for Dockerfile

Triton Packager Results:
Name Type Description

image string The full name of a built Docker image
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Example
Example input file structure for Python Backend:

• model.py - the Python module that implements interface expected by Triton;
• odahuflow.model.yaml - simple manifest with model name and version
• conda.yaml - describes Conda environment for model
• config.pbtxt - Triton Model config file (specification)
• data.json… - arbitrary file(s) that will be put next to model file

Triton packaging with custom arguments

id: "triton-packager-example"
spec:
    integrationName: docker-triton
    artifactName: model-123456789.tar
    targets:
        - connectionName: test-docker-registry
          name: docker-push
    arguments:
        imageName: "triton-model:prefix-{{ RandomUUID }}"

Nvidia Triton Packager
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Model Deployments

ODAHU model deployment component allows to deploy ML models as an inference
online services or batch jobs in a Kubernetes cluster.
Features:

• Automatic scaling of deployed inference service instances.
• Monitoring of deployed inference services.
• Various API traffic routing polices (A/B, Canary).
• Inference request and response logging in a structured form with unique id to

be used in feedback loop.
• Dynamic OpenAPI/Swagger for deployed inference service APIs.
• Inference service API secured with JWT and access control polices.

Inference Servers
A model can be deployed in ODAHU if only it is packed with a supported Inference
Server. Inference Server is typically a web service that “wraps” an ML model and lets
remote clients to invoke the model via HTTP (or any other protocol).
An Inference Servers that wraps the model has to be indicated in predictor field of a
Model Deployment.
ODAHU currently supports several Inference Servers:

• ODAHU Inference Server: predictor: odahu-ml-server
• NVIDIA Triton Inference Server: predictor: triton

Model Deployments
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ODAHU Inference Server
Value for “predictor” field of Model Deployment: predictor: odahu-ml-server
ODAHU Inference Server is an inference server that builds a simple HTTP layer on top
of any MLFlow model with an HTTP layer.
To pack a model into ODAHU Inference Server Docker REST packager has to be used.

NVIDIA Triton Inference Server
Value for “predictor” field of Model Deployment: predictor: triton
Triton Server is a feature-rich inference server. To pack a model into a Triton Server,
Triton Packager has to be used.
Triton Server uses KFServing Inference Protocol.

General Deployment Manifest Structure
Deployment API

kind: ModelDeployment
# Some unique value among all deployments
# Id must:
#  * contain at most 63 characters
#  * contain only lowercase alphanumeric characters or ‘-’
#  * start with an alphabetic character
#  * end with an alphanumeric character
id: wine-12345
spec:
    # Predictor is an inference backend name; required field
    # Possible values are: odahu-ml-server, triton
    predictor: odahu-ml-server

    # Model image is required value. Change it
    image: gcr.io/project/test-e2e-wine-1.0:b591c752-43d4-43e0-8392-9a5715b67573
    # If the Docker image is pulled from a private Docker repository then
    # you have to create a Odahu-flow connecton and specify its id here.
    # imagePullConnID: test

    # Compute resources for the deployment job.
    resources:
      limits:
        cpu: 1
        memory: 1Gi
      requests:
        cpu: 1
        memory: 1Gi

    # Minimum number of replicas
    minReplicas: 0
    # Maximum number of replicas
    maxReplicas: 1

Model Deployment management
Model Deployments can be managed using the following ways.

General Deployment Manifest Structure
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ModelDeployments are available in the Swagger UI at
http://api-service/swagger/index.html URL.
Odahuflowctl supports the Model Deployment API. You must be logged in if you want
to access the API.
Getting all model deployments in json format:

odahuflowctl deployment get --format json

Getting the model name of the model deployments:

odahuflowctl deployment get --id tensorflow-cli -o 'jsonpath=[*].spec.model.name'

• Creating of a deployment from deploy.yaml file:

odahuflowctl deployment create -f deploy.yaml

• All model deployments commands and documentation:

odahuflowctl deployment --help

• All model deployments commands and documentation:

odahuflowctl deployment --help

• Getting a model deployment information:

odahuflowctl model info --md wine

• Making a prediction:

odahuflowctl model invoke --md wine --file request.json

Odahu-flow provides the JupyterLab extension for interacting with Model
Deployments API.

Service Catalog
Service catalog provides a Swagger UI for Model Deployments.

Service Catalog
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Note

The model must provide input and output samples to appear in the Service
Catalog

Service catalog Swagger UI:

Example of a prediction request:

Grafana Dashboard
Out of the box, Odahu-flow provides the Grafana Model Deployment dashboard. It
contains the charts with following system metrics:

Grafana Dashboard
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• availability
• replicas
• CPU
• memory
• number of failed HTTP requests
• latency
• …

Example of the dashboard:

Feedback
Model Feedback provides a view of performance over all stages of model lifecycle.
The mechanism is simple:

1. Ask Deploy for prediction (with or without Request-Id provided)
2. Send prediction feedback to Odahu-flow (with Request-Id returned from

previous step)
3. Odahu-flow stores the prediction and feedback to a configurable location

Important

This flow requires feedback to be enabled in values.yaml during Helm chart
installation

Feedback
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1. If prediction is requested without Request-ID: Request-ID header with random ID
is added to the request. Otherwise, Request-ID is not generated.

2. Request and response are stored on configured external storage (eg. S3, GCS)
3. User sends Model Feedback as an argument to the feedback endpoint. (Feedback
can be arbitrary JSON.) 5. All Feedback is persisted on external storage and can be
used by models during subsequent Trains.
Making a prediction request:

curl -X POST -vv "https://``cluster-url``/model/``model-deployment-id``/api/model/invoke" \
-H "Authorization: Bearer ``JWT`` \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{ \"columns\": [ \"fixed acidity\", \"volatile acidity\", \"citric acid\", \"residual sugar\", \"chlorides\", \"free sulfur dioxide\", \"total sulfur dioxide\", \"density\", \"pH\", \"sulphates\", \"alcohol\" ], \"data\": [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ]}"

The response contains a generated Request-Id header.

HTTP/2 200
server: nginx/1.13.12
date: Tue, 17 Dec 2019 10:58:49 GMT
content-type: application/json
content-length: 45
model-name: test-e2e-wine
model-version: 1.0
request-id: 6fa1f636-fb80-9979-b8c6-d78f5e90f0c1
x-envoy-upstream-service-time: 43
strict-transport-security: max-age=15724800; includeSubDomains

{"prediction": [6.0], "columns": ["quality"]}

Requests and responses are persisted in a bucket. (File name ~= /request_respons
e/income/1.1/year=2019/month=07/day=24/2019072414_4.json)
The first file contains meta-information about request and response:{

  "request_id": "6fa1f636-fb80-9979-b8c6-d78f5e90f0c1",
  "request_content": "{\"columns\": [\"alcohol\", \"chlorides\", \"citric acid\", \"density\", \"fixed acidity\", \"free sulfur dioxide\", \"pH\", \"residual sugar\", \"sulphates\", \"total sulfur dioxide\", \"volatile acidity\"], \"data\": [[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]}",
  "request_uri": "/model/test-e2e-wine/api/model/invoke",
  "response_http_headers": {
    ":status": "200",
    "date": "Tue, 17 Dec 2019 08:46:40 GMT",
    "model-name": "test-e2e-wine",
    "model-version": "1.0",
    "server": "istio-envoy",
    "connection": "close",
    "content-length": "45",
    "content-type": "application/json",
    "request-id": "12dcddd5-771d-9fc0-b326-816211cf8172",
    "x-envoy-upstream-service-time": "6"
  },
  "model_version": "1.0",
  "request_http_headers": {
    ":method": "POST",
    "x-scheme": "https",
    "accept": "*/*",
    "x-istio-attributes": "ClEKF2Rlc3RpbmF0aW9uLnNlcnZpY2UudWlkEjYSNGlzdGlvOi8vb2RhaHUtZmxvdy1kZXBsb3ltZW50L3NlcnZpY2VzL3Rlc3QtZTJlLXdpbmUKUwoYZGVzdGluYXRpb24uc2VydmljZS5ob3N0EjcSNXRlc3QtZTJlLXdpbmUub2RhaHUtZmxvdy1kZXBsb3ltZW50LnN2Yy5jbHVzdGVyLmxvY2FsCisKGGRlc3RpbmF0aW9uLnNlcnZpY2UubmFtZRIPEg10ZXN0LWUyZS13aW5lCjgKHWRlc3RpbmF0aW9uLnNlcnZpY2UubmFtZXNwYWNlEhcSFW9kYWh1LWZsb3ctZGVwbG95bWVudApPCgpzb3VyY2UudWlkEkESP2t1YmVybmV0ZXM6Ly9pc3Rpby1pbmdyZXNzZ2F0ZXdheS04NjlkYjdkOWJiLWpsemtyLmlzdGlvLXN5c3RlbQ==",
    "knative-serving-namespace": "odahu-flow-deployment",
    "x-envoy-original-path": "/model/test-e2e-wine/api/model/invoke",
    ":scheme": "http",
    "x-forwarded-host": "odahu.example.com",
    "x-original-uri": "/model/test-e2e-wine/api/model/invoke",
    "user-agent": "python-requests/2.22.0",
    "x-forwarded-port": "443",
    "content-type": "application/json",
    "x-b3-sampled": "1",
    "content-length": "257",
    "x-real-ip": "10.4.0.11",
    "x-forwarded-for": "10.4.0.11,10.44.0.10",
    "x-envoy-external-address": "10.44.0.10",
    "x-request-id": "12dcddd5-771d-9fc0-b326-816211cf8172",
    "x-forwarded-proto": "http",
    ":authority": "odahu.example.com",
    "x-b3-traceid": "488abe197a652c2ce80e6b848a4c56e6",
    ":path": "/api/model/invoke",
    "accept-encoding": "gzip, deflate",
    "x-envoy-decorator-operation": "test-e2e-wine.odahu-flow-deployment.svc.cluster.local:80/model/test-e2e-wine/api*",
    "x-b3-spanid": "e80e6b848a4c56e6",
    "knative-serving-revision": "test-e2e-wine-l4xt7"
  },
  "response_status": "200",
  "request_host": "odahu.example.com",
  "model_name": "test-e2e-wine",
  "request_http_method": "POST",
  "time": "2019-12-17 08:46:40 +0000"
}

The second file contains the response body with the same Request-Id (File name
~=
/response_body/income/1.1/year=2019/month=07/day=24/2019072414_1.json)

{
  "request_id": "6fa1f636-fb80-9979-b8c6-d78f5e90f0c1",
  "model_version": "1.0",
  "model_name": "test-e2e-wine",
  "response_content": "{\"prediction\": [6.0], \"columns\": [\"quality\"]}",
  "time": "2019-12-17 08:46:40 +0000"
}

Send Model Feedback request:

curl -X POST -vv "${BASE_URL}/feedback/model/" \
-H "Authorization: Bearer ${JWT}" \
-H "x-model-name: income" \
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-H "x-model-version: 1.1" \
-H "Request-ID: previous-prediction-id" \
-H 'Content-Type: application/json' \
-d '{"truthful": 1}'

Note that the -d argument can pass arbitrary JSON.
A successful feedback request will have the following properties:

• HTTP response: 200
• Response field error is false.
• Response field registered is true.
• Response field message is what was sent to storage.

Example response

{
  "message": {
    "RequestID": "previous-prediction-id",
    "ModelVersion": "1.0",
    "ModelName": "test-e2e-wine",
    "Payload": {
      "json": {
        "truthful": 1
      }
    }
  }
}

File name ~=
/feedback/test-e2e-wine/1.0/year=2019/month=11/day=23/2019072311_2.json
will have a format like this, with feedback stored in the payload field:

{
  "request_id": "previous-prediction-id",
  "model_version": "1.0",
  "model_name": "test-e2e-wine",
  "payload": {
    "json": {
      "truthful": 1.0
    }
  },
  "time": "2019-12-17 20:08:05 +0000"
}

Feedback
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Batch Inference
This section describes API and protocols related to Batch inference using ODAHU.
ODAHU Batch Inference feature allows user to get inferences using ML model for
large datasets that are delivered asyncronously, not via HTTP API, but through other
mechanisms.
Currently Batch Inference supports the following ways to delivery data for
forecasting:

• Object storage

• GCS
• S3
• Azureblob

In future we consider to add ability to process data directly from Kafka topic and
other async data sources.
Please also take a look at example.

API Reference

InferenceService
InferenceService represents the following required entities:

• Predictor docker image that contains predictor code
• Model files location on object storage (directory or .zip / .tar.gz archive)
• Command and Arguments that describe how to execute image

When a user trains a model then they should build an image with code that follows
Predictor code protocol and register this image as well as appropriate model files
using InferenceService entity in ODAHU Platform.
User describes how inference should be triggered using different options in
[].spec.triggers.

InferenceJob
InferenceJob describes forecast process that was triggered by one of the triggers in
InferenceService. If [].spec.triggers.webhook is enabled then its possible to run
InferenceJob by making POST request as described below. By default webhook
trigger is enabled. Note, that currently its the only one way to trigger jobs.
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Predictor code protocol
ODAHU Platform launches docker image provided by user as [].spec.image
(InferenceService) and guarantees the next conventions about input/model location
inside container as well as format of input and output data.

Env variables

Title
Env variable Description

$ODAHU_MODEL Path in local filesystem that contains all
model files from [].spec.modelSource

$ODAHU_MODEL_INPUT Path in local filesystem that contains all
input files from [].spec.dataSource

$ODAHU_MODEL_OUTPUT Path in local filesystem that will be
uploaded to
[].spec.outputDestination

Input and output formats
Predictor code must expect input as set of JSON files with extensions .json located in
folder that can be found in $ODAHU_MODEL_INPUT environment variable. These JSON
files have structure of Kubeflow inference request objects.
Predictor code must save results as set of JSON files with extension .json in the
folder that can be found in $ODAHU_MODEL_INPUT environment variable. These JSON
files must have structure of Kubeflow inference response objects.

Implementation details
This section helps with deeper understanding of underlying mechanisms.
InferenceJob is implemented as TektonCD TaskRun with 9 steps

1. Configure rclone using ODAHU connections described in
BatchInferenceService

2. Sync data input from object storage to local fs using rclone
3. Sync model from object storage to local fs using rclone
4. Validate input to Predict Protocol - Version 2
5. Log Model Input to feedback storage

Predictor code protocol
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6. Run user container with setting $ODAHU_MODEL, $ODAHU_MODEL_INPUT,
$ODAHU_MODEL_OUTPUT

7. Validate output to Predict Protocol - Version 2
8. Log Model Output to feedback storage
9. Upload data from $ODAHU_MODEL_OUTPUT to

[].spec.outputDestination.path

Predictor code protocol
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Glossary
VCS

Version control system. A service that stores model source code for development
and deployment procedures (e.g. a GitHub Repository).

Trained Model Binary
An archive containing a trained ML/AI model (inference code, model weights, etc).
Odahu defines a format for these binaries. See <ref_model_format.html>

Trainer
Application that uses model source code, Data Bindings, Connections and
Training Hyperparameters to produce a Trained Model Binary.

Data Binding
Reference to remote data (e.g. files from S3) should be placed for a Train
process.

Connection
Credentials for an external system. For example: Docker Registry, cloud storage
location, etc.

Training Hyperparameters
Parameter for Training process. For example, count of epochs in evolution
algorithms.

Train
A containerized process that converts model source code, Data Bindings,
Connections and Training Hyperparameters to Trained Model Binary using
a Trainer defined in a Trainer Extension

Trainer Extension
A pluggable Train implementation.

Packager
Containerized application that uses a Trained Model Binary and Connections
and converts them into a target Archive. Typically this is a Docker image with
REST API.

Package
Containerized process which turns a Trained Model Binary into a Docker image
with REST API using a Packager Extension.

Packager Extension
A pluggable Package implementation.

Deployer
Containerized application that uses the results of a Package process and
Connections to deploy a packaged model on a Kubernetes cluster.

Deploy
Containerized process that deploys results of a Package operation to Kubernetes
cluster with a REST web service.

Trainer Metrics
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Metrics set by Trainer code during Train (e.g. accuracy of model). These metrics
can be used for querying and comparing Train events.

Trainer Tags
Key/value value pairs that are set by Trainer code (e.g. type of algorithm). Can be
used for querying and comparing Train runs.

General Python Prediction Interface
Format of storing models, written in a Python language

MLflow Trainer
Integration of MLflow library for training models, written in a Python. Details -
MLFlow Trainer

REST API Packager
Integration for packing trained models into Docker Image with served via REST
API

API service
API for managing Odahu Platform resources for cloud deployed Platform

Operator
A Kubernetes Operator that manages Kubernetes resources (Pods, Services and
etc.) for Odahu Train, Package, and Deploy instances.

Prediction
A deployed model output, given input parameters.

Model prediction API
API provided by deployed models to allow users to request predictions through a
web service.

Prediction Feedback
Feedback versus the previous prediction, e.g. prediction correctness.

Model Feedback API
An API for gathering Prediction Feedback

Feedback aggregator
A service that provides a Model Feedback API and gathers input and output
prediction requests

Odahu-flow SDK
An extensible Python client library for API service, written in Python language.
Can be installed from PyPi.

Odahu-flow CLI
Command Line Interface for API service, written in Python. Can be installed from
PyPi. It uses the Odahu-flow SDK.

Plugin for JupyterLab
A odahu-specific plugin that provides Odahu Platform management controls in
JupyterLab.

Plugin for Jenkins
A library for managing Odahu Platform resources from Jenkins Pipelines.

Plugin for Airflow
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A library that provides Hooks and Operators for managing Odahu Platform
resources from Airflow.

Model Deployment Access Role Name
Name of scope or role for accessing model deployments.

JWT Token
A JSON Web Token that allows users to query deployed models and to provide
feedback. This token contains an encoded role name.

A/B testing
Process of splitting predictions between multiple Model Deployments in order
to compare prediction metrics and Model Feedback for models, which can vary
by source code, dataset and/or training hyperparameters

Odahu distribution
A collection of Docker Images, Python packages, or NPM packages, which are
publicly available for installation as a composable Odahu Platform.

Odahu Helm Chart
A YAML definition for Helm that defines a Odahu Platform deployed on a
Kubernetes cluster.

Odahu-flow’s CRDs
Objects that API service creates for actions that require computing resources to
be stored. For example: connections, Trains, etc.
These objects are Kubernetes Custom Resources and are managed by operator.

Identity Provider (idP)
A component that provides information about an entity (user or service).

Policy Enforcement Point (PEP)
A component that enforces security policies against each request to API or other
protected resources.

Policy Decision Point (PDP)
A component that decides whether the request (action in the system) should be
permitted or not.
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Changelog

Odahu 1.6.0, 3 September 2021

Features:

• Core:

• MLFlow artifacts storage is now correctly works with cloud storage for
Google Cloud and Amazon.

Bug Fixes:

• Core:

• Model feedback & Triton model logs are now stored with model
name/version (#607,).

Odahu 1.5.0, 1 August 2021

Features:

• Core:

• New Batch Inference API (#500, #537).
• Object storage added as an option of ML project source code repository

(#360).
• Python SDK:

• Add clients to work with User and Feedback entities (#295).

Updates

• Core:

• Set model-name/model-version headers on service mesh level (#496).
That looses the requirements to inference servers. Previously any
inference server (typically a model is packed into one on Packaging
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stage) was obligated to include the headers into response for feedback
loop to work properly. That rule restricts from using any third-party
inference servers (such as NVIDIA Triton), because we cannot control the
response headers.

• Removed deprecated fields updateAt/createdAt from core API entities
(#394).

• Move to recommended and more high-level way of using Knative which
under-the-hood is responsible for a big part of ModelDeployment
functionality (#347).

• CLI:

• Model info and invoke parameter JWT renamed to token (#577).
• Usage descriptions updated (#577).
• Auth tokens are automatically refreshing (#509).

• Aiflow plugin:

• Airflow plugin operators expect a service account’s client_secret in a
password field of Airflow Connection now. previously it expects
client_secret in extra field. (#29).
`Breaking change!`: You should recreate all Airflow connections for
ODAHU server by moving the client_secret from the extra field into the
password field.
Please do not forget to remove your client_secret from the extra
field for security reasons.

Bug Fixes:

• Core:

• Fix & add missing updatedAT/createdAT (#583, #600, #601, #602).
• Training result doesn’t contain commit ID when using object storage as

algorythm source (#584).
• RunID is now present for model training with mlflow toolchain (#581).
• InferenceJob objects can now be deleted correctly (#555).
• Deployment roleName changes now applies correctly (#533).
• X-REQUEST-ID header are now correctly handled on service mesh layer to

support third-party inference servers (#525).
• Fix packaging deletion via bulk delete command (#416).
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Odahu 1.4.0, 27 February 2021

Features:

• Core:

• Triton Packaging Integration (Nvidia Triton Packager) added as a part of
Triton pipeline (#437).

• Local training & packaging now covered with tests (#157).
• MLflow toolchain with custom format for model training artifact (#31).

• UI:

• New Play tab on Deployment page provides a way to get deployed model
metadata and make inference requests from the UI (#61).

• New Logs tab on Deployment page provides a way to browse logs of
deployed model (#45).

• User now can create packaging and deployments based on finished
trainings and packagings (#38).

Updates:

• Core:

• Service catalog is rewritten (#457).
• Deployed ML models performance optimized (#357).
• OpenPolicyAgent-based RBAC for deployed models are implemented

(#238).
• CLI:

• Option --disable-target for odahuflowctl local pack run command added. It allows you disable
targets which will be passed to packager process. You can use multiple options at once. For example:
odahuflowctl local pack run ... --disable-target=docker-pull --disable-target=docker-push.

• Options --disable-package-targets/--no-disable-package-targets
for odahuflowctl local pack run command are deprecated.

• odahuflowctl local pack run behavior that implicitly disables all
targets by default is deprecated.

Bug Fixes:

• Core:
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• Knative doesn’t create multiple releases anymore when using multiple
node pools (#434).

• Liveness & readiness probes lowest values are now 0 instead of 1 (#442).
• Correct error code now returned on failed deployment validation (#441).
• Empty uri param is not longer validated for ecr connection type (#440).
• Return correct error when missed uri param passed for git connection

type (#436).
• Return correct error when user has insufficient privileges (#444).
• Default branch is now taken for VCS connection if it’s not provided by user

(#148).
• UI:

• Auto-generated predictor value doesn’t show warning on deploy creation
(#80).

• Default deploy liveness & readiness delays are unified with server values
(#74).

• Deployment doesn’t raise error when valid predictor value passed (#46).
• Sorting for some columns fixed (#48).
• Secrets are now masked on review stage of connection creation (#42).
• Interface is now works as expected with long fields on edit connection

page (#65)

Odahu 1.3.0, 7 October 2020

Features:

• Core:

• Persistence Agent added to synchronize k8s CRDS into main storage
(#268).

• All secrets passed to ODAHU API now should be base64 encoded.
Decrypted secrets retrieved from ODAHU API via
/connection/:id/decrypted are now also base64 encoded. (#181, #308).

• Positive and negative (for 404 & 409 status codes) API tests via odahuflow
SDK added (#247).

Updates:

• Core:
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• Robot tests will now output pods state after each API call to simplify
debugging.

Bug Fixes:

• Core:

• Refactoring: some abstractions & components were renamed and moved
to separate packages to facilitate future development.

• For connection create/update operations ODAHU API will mask secrets in
response body.

• Rclone output will not reveal secrets on unit test setup stage anymore.
• Output-dir option path is now absolute (#208).
• Respect artifactNameTemplate for local training result directory name

(#193).
• Allow to pass Azure BLOB URI without schema on connection creation

(#345)
• Validate model deployment ID to ensure it starts with alphabetic character

(#294)
• UI:

• State of resources now updates correctly after changing in UI (#11).
• User aren’t able to submit training when resource request is bigger than

limit ‘(#355).
• Mask secrets on review page during conenction creation process (#42)
• UI now responds correct in case of concurrent deletion of entities (#44).
• Additional validation added to prevent creation of resources with

unsupported names (#342, #34).
• Sorting added for training & packaging views (#13, #48).
• reference field become optional for VCS connection (#50).
• Git connection hint fixed (#7).

• CLI:

• Configuration secrets is now masked in config output (#307).
• Local model output path will now display correctly (#371).
• Local training output will now print only local training results (#370).
• Help message fixed for odahuflowctl gppi command (#375).

• SDK:

• All API connection errors now should be correctly handled and retried.
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Odahu 1.2.0, 21 August 2020

Features:

• Core:

• PostgreSQL became main database backend as part of increasing project
maturity (#175). You can find additional documentation in instructions.

• ODAHU CLI:

• Option –ignore-if-exist added for entities creation (#199).
• Descriptions updated for commands & options (#160, #197, #209).

• ODAHU UI:

• ODAHU UI turned into open-source software and now available on github
under Apache License Version 2.0. UDAHU UI is an WEB-interface for
ODAHU based on React and TypeScript. It provides ODAHU workflows
overview and controls, log browsing and entity management.

Updates:

• Knative updated to version 0.15.0. That makes it possible to deploy model
services to different node pools (#123).

• Go dependencies was globally updated to migrate from GOPATH to go modules
(#32).

Bug Fixes:

• Core:

• Training now will fail if wrong data path or unexisted storage bucket name
is provided (#229).

• Training log streaming is now working on log view when using native log
viewer (#234).

• ODAHU pods now redeploying during helm chart upgrade (#111).
• ODAHU docker connection now can be created with blank username &

password to install from docker public repo (#184).
• ODAHU CLI:

• Return training artifacts list sorted by name (#165).
• Don’t output logs for bulk command (#200).
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• Fix local pack cleanup-containers command (#204).
• Return correct message if entity not found (#210).
• Return correct message if no options provided (#211).

• ODAHU UI:

• Fix description of replicas of Model Deployment.
• Trim spaces for input values.
• Fix incorrect selection of VCS connection.
• Close ‘ODAHU components’ menu after opening link in it.

Odahu 1.1.0, 16 March 2020

New Features:

• Jupyterhub:
Supported the JupyterHub in our deployment scripts. JupyterHub allows
spawning multiple instances of the JupyterLab server. By default, we provide
the prebuilt ODAHU JupyterLab plugin in the following Docker images:
base-notebook, datascience-notebook, and tensorflow-notebook. To build a
custom image, you can use our Docker image template or follow the
instructions.

• GPU:
Added the ability to deploy a model training on GPU nodes. You can find an
example of training here. This is one of the official MLFlow examples that
classifies flower species from photos.

• Secuirty:
We integrated our WEB API services with Open Policy Agent that flexibly
allows managing ODAHU RBAC. Using Istio, we forbid non-authorize access to
our services. You can find the ODAHU security documentation here.

• Vault:
ODAHU-Flow has the Connection API that allows managing credentials from
Git repositories, cloud storage, docker registries, and so on. The default
backend for Connection API is Kubernetes. We integrated the Vault as a
storage backend for the backend for Connection API to manage your
credentials securely.

• Helm 3:
We migrated our Helm charts to the Helm 3 version. The main goals were to
simplify a deployment process to an Openshift and to get rid of the tiller.

• ODAHU UI:
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ODAHU UI provides a user interface for the ODAHU components in a browser.
It allows you to manage and view ODAHU Connections, Trainings,
Deployments, and so on.

• Local training and packaging:
You can train and package an ML model with the odahuflowctl utility using the
same ODAHU manifests, as you use for the cluster training and packaging.
The whole process is described here.

• Cache for training and packaging:
ODAHU Flow downloads your dependencies on every model training and
packaging launch. To avoid this, you can provide a prebuilt Docker image with
dependencies. Read more for model training and packagings.

• Performance improvement training and packaging:
We fixed multiple performance issues to speed up the training and packaging
processes. For our model examples, the duration of training and packaging
was reduced by 30%.

• Documentation improvement:
We conducted a hard work to improve the documentation. For example, the
following new sections were added: Security, Installation, Training, Packager,
and Model Deployment.

• Odahu-infra:
We created the new odahu-infra Git repository, where we placed the following
infra custom helm charts: Fluentd, Knative, monitoring, Open Policy Agent,
Tekton.

• Preemptible nodes:
Preemptible nodes are priced lower than standard virtual machines of the
same types. But they provide no availability guarantees. We added new
deployment options to allow training and packaging pods to be deployed on
preemptible nodes.

• Third-parties updates:

• Istio
• Grafana
• Prometheus
• MLFlow
• Terraform
• Buildah
• Kubernetes

Misc/Internal

• Google Cloud Registry:
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We have experienced multiple problems while using Nexus as a main dev
Docker registry. This migration also brings us additional advantages, such as
in-depth vulnerability scanning.

• Terragrunt:
We switched to using Terragrunt for our deployment scripts. That allows
reducing the complexity of our terraform modules and deployment scripts.

Odahu 1.1.0, 16 March 2020
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Development

Pre requirements
To participate in developing of Odahu project you have to meet these requirements:

• Linux/macOS operating systems (due to tools used for development)
• Python:

• Python v3.6
• Pipenv

• Golang:

• Golang v1.14
• Dep
• golangci-lint
• Kubebuilder
• swag
• gotestsum

• JupyterLab plugin:

• Typescript
• Yarn

• Infra:

• HELM v3.2.4
• Kubectl v1.16.10
• Docker v17+
• Swagger codegen 2.4.7

Useful links
• Python:

• Mlflow
• Robot Framework Guide
• Odahu Airflow Plugins Development

• Golang:

• Kubebuilder
• JupyterLab plugin:

• Typescript handbook
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• React documentation
• JupyterLab plugin Extension Developer Guide

• Infra:

• Helm
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Repositories

A repository directory structure
• containers - docker files
• helms - core helm chart
• packages - source code of packages and applications.
• scripts - utility scripts for CI/CD process.

odahu/odahu-flow
Core services of Odahu-flow project.

• odahu-flow-cli python package
• odahu-flow-sdk python package
• E2E Odahu tests
• Training, packaging and deployment operator
• API server
• Feedback services

odahu/odahu-trainer
Collection of training extensions:

• mlflow

odahu/odahu-packager
Collection of model packagers:

• docker-rest
• docker-cli

odahu/odahu-flow-jupyterlab-plugin
The jupyterlab-plugin that provides UI for Odahu-flow API service.

Repositories
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odahu/odahu-airflow-plugin
An apache airflow plugin for the Odahu Platform.

odahu/odahu-docs
The repository contains Odahu documentation, which is available here.

odahu/odahu-examples
Examples of ML models.

odahu/odahu-infra
Docker images and deployments script for third-party services.

odahu/odahu-airflow-plugin
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Development hints

Set up a development environment
Odahu product contains 5 main development parts:

• Python packages

• Executes the make install-all command to downloads all dependencies
and install Odahu python packages.

• Verifies that the command finished successfully, for example:
odahuflowctl --version

• Main entrypoints:

• Odahu-flow SDK - packages/sdk
• Odahu-flow CLI - packages/cli

• Odahu-flow JupyterLab plugin

• Workdir is odahu/jupyterlab-plugin
• Executes the yarn install command to download all JavaScript

dependencies.
• Executes the npm run build && jupyter labextension install

command to build the JupyterLab plugin.
• Starts the JyputerLab server using jupyter lab command.

• Golang services:

• Executes the dep ensure command in the packages/operator directory to
downloads all dependencies.

• Executes the make build-all command in the packages/operator to build
all Golang services.

• Main entrypoints:

• API Gateway service - packages/operator/cmd/edi/main.go
• Kubernetes operator - packages/operator/cmd/operator/main.go
• AI Trainer - packages/operator/cmd/trainer/main.go
• AI Packager - packages/operator/cmd/packager/main.go
• Service catalog - packages/operator/cmd/service_catalog/main.go

• Odahu-flow Mlflow integration

• Executes the pip install -e . command in the odahu-flow-mlflow
repository.

• Odahu-flow Airflow plugin

• Executes the pip install -e . command in the
odahu-flow-airflow-plugins repository.
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Update dependencies
• Python. Update dependencies in a Pipfile. Execute make update-python-deps

command.
• Golang. Update dependencies in a go.mod. Execute go build ./... command

in packages/operator directory.
• Typescript. Odahu-flow uses the yarn to manipulate the typescript

dependencies.

Make changes in API entities
All API entities are located in packages/operator/pkg/api directory.
To generate swagger documentation execute make generate-all in
packages/operator directory. Important for Mac users: Makefile uses GNU sed tool,
but MacOS uses BSD sed by default. They are not fully compatible. So you need
install and use GNU sed on your Mac for using Makefile.
After previous action you can update python and typescript clients using the
following command: make generate-clients.

Actions before a pull request
Make sure you have done the following actions before a pull request:

• for python packages:

• make unittest - Run the python unit tests.
• make lint - Run the python linters.

• for golang services in the packages/operator directory:

• make test - Run the golang unit tests.
• make lint - Run the golang linters.
• make build-all - Compile all golang Odahu-flow services

• for typescript code in the packages/jupyterlab-plugin directory:

• yarn lint - Run the typescript linter.
• jlpm run build - Compile the jupyterlab plugin.

Local Helm deploy
During development, you often have to change the helm chart, to test the changes
you can use the following command quickly: make helm-install.
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Optionally, you can create the variables helm file and specify it using the
HELM_ADDITIONAL_PARAMS Makefile option. You always can download real variables
file from a Terraform state.
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Integration Testing
This page provides information about testing of ODAHU. ODAHU uses Robot
Framework for an integration, system and end-to-end testings.
All tests are located in the following directories of the ODAHU project:

• packages/robot/ - a python package with additional Robot libraries. For
example: kubernetes, auth_client, feedback, and so on.

• packages/tests/stuff/ - setup, cleanup scripts and artifacts for integration
testing. For example: pre-trained ML artifacts, test toolchain integrations, and so
on.

• packages/tests/e2e/ - directory with the Robot Framework tests.

Preparing for testing

It’s expected that you are using a Unix-like operating system and have installed
conda (4.10+), preferably miniconda.

Clone ODAHU project from git repository and proceed to main dir – odahu-flow.
Create Conda virtual environment with python version 3.6+.
Update and/or install pip and setuptools:

$ pip install -U pip setuptools

Proceed to the odahu-flow main directory where the Makefile is located and run
make command:

/odahu-flow$ make install-all 

Check that odahuflowctl works:

/odahu-flow$ odahuflowctl

Also, you should have installed jq and rclone packages.

Running tests

We set up robot tests for gke-odahu-flow-test cluster in the example below.
NB. Do not forget change your cluster url and odahu-flow version.
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By default put cluster_profile.json file in odahu-flow/.secrets/ folder (by
default) or you can specify another default name of file or directory in ‘Makefile’
in parameters: SECRET_DIR and CLUSTER_PROFILE.
You can optionally override the following parameters in .env file (which by
default are taken from Makefile).

• CLUSTER_NAME
• ROBOT_OPTIONS
• ROBOT_FILES
• HIERA_KEYS_DIR
• SECRET_DIR
• CLOUD_PROVIDER
• DOCKER_REGISTRY
• EXPORT_HIERA_DOCKER_IMAGE
• ODAHUFLOW_PROFILES_DIR
• ODAHUFLOW_VERSION, etc.

For that, you should create .env file in the main dir of the project (odahu-flow).
In our example, we will override the parameters of Makefile in .env file:

# Cluster name
CLUSTER_NAME=gke-odahu-flow-test
# Optionally, you can provide RobotFramework settings below.
# Additional robot parameters. For example, you can specify tags or variables.
ROBOT_OPTIONS=-e disable
# Robot files
ROBOT_FILES=**/*.robot
# Cloud which will be used
CLOUD_PROVIDER=gcp
# Docker registry
DOCKER_REGISTRY=gcr.io/or2-msq-<myprojectid>-t1iylu/odahu
# Version of odahu-flow
ODAHUFLOW_VERSION=1.1.0-rc8

Afterwards, you should prepare an Odahu cluster for Robot Framework tests by
using the command:

 /odahu-flow$ make setup-e2e-robot

NB. You should execute the setup command only once for a new cluster.
The next step is to run the Robot Framework tests:

/odahu-flow$ make e2e-robot

Finally, cleanup the cluster after testing:

/odahu-flow$ make cleanup-e2e-robot
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NB. You should run the cleanup command only once, after all testing has been
completed.
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